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consisting just of information? Could the universe represent over the time the most general 

collection of logical codes? If we think of information as expressed in terms of binary codes, 

we could interpret binary sets as spatial arrangements of energy, giving rise to discrete 

geometries. Can we then identify a path through geometries, or sets of geometries, representing 

the history of the physical universe? This book introduces a theoretical framework that, by 

giving an answer to these questions, unifies general relativity and quantum mechanics at a 

more fundamental level. The geometry of the universe, its relativistic and quantum mechanical 

nature and the spectrum of elementary particles show up as the consequence of an entropic 

principle. All the masses and interaction couplings are computed as functions of the only free 

parameter, the age of the universe. This approach contributes to shed new light on several 

branches of physics, from elementary particle physics to the physics of high temperature 

superconductors, to cosmology, as well as on certain aspects of the natural evolution. 

 

This works updates all the previous research regarding the project „the universe of codes“ with 

a refreshed and improved presentation of the arguments, and refined calculations. It is addressed 
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an as much as possible self-contained discussion of the whole project. This should save the 

reader the trouble of jumping forth and back through references.  
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Preface

What is it about

This book discusses a new approach to the physics of space and
time, which enables a unified description of elementary particles and
gravity. Relativity, quantum mechanics, field and string theory are
lifted to a new level of interpretation, that puts everything into a
different perspective, starting from the very definition of space, and
time. The most interesting aspect of this scenario is its predictive
power. The type of elementary particles, the geometry of the universe,
and its relativistic and quantum mechanical nature, are predicted as
the consequence of a very elementary and basic entropic principle. All
the masses and interaction couplings are computed as functions of the
only free parameter, the age of the universe.

On a formal level, much is similar to what is already known, being
firmly anchored in the theory of relativity, quantum mechanics, field
and string theory. However, everything is incorporated into a theore-
tical framework rooted on more fundamental principles and assump-
tions than quantum mechanics and relativity. Not only all what al-
ready worked within these theories is here recovered, although just
as an effective approximation, a special case valid under appropriate
conditions, but it comes together with new aspects, that put under a
different light also the issues related to the so-called “new physics”,
namely the theoretical explanation of new phenomena, detected in
particle colliders or showing up in astronomical observations.

Despite the fact that many section titles, and names of physical
quantities, evoke known concepts, there are here only few already
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Preface

known expressions, and even in case some may look familiar, as a
matter of fact reading them extrapolated from their context can be
misleading, because here everything is getting a new interpretation.
Therefore, it cannot simply be extracted and directly compared with
similar-sounding concepts of the literature. The best way to approach
this work is to read it from the beginning, getting gradually the more
and more familiar with the concepts which are introduced.

The background

This work collects, updates and improves, the results of several
years of research. The project started with an investigation of non-
perturbative string-string dualities, and ended up with the proposal of
a new theoretical scenario, which entails a paradigm shift with respect
to the usual approach to elementary particle physics, gravity, cosmo-
logy, with repercussions also in other domains of physics or natural
science, such as high-temperature superconductivity, palaeontology,
and potentially other ones. The first steps of the research have been
set in [1], a work that extended some ideas previously worked out in [2]
to a lower supersymmetric case of string string dualities, allowing to
set the ground for a thorough investigation of non-perturbative aspects
in a pure stringy context, i.e. not just relying on the extension of pro-
perties belonging to field theory. This was followed by [3] to complete
the pattern of dualities by including also type I string. The basis for
a thorough investigation were set in [4], a classification work of N=2
type II orbifolds. After [5] opened the way to the identification of non-
perturbatively realized gauge groups, [6] provided a complete duality
pattern within N=2 orbifold constructions. The turning point in the
approach to the string target space was provided by the investigation
of the cosmological constant, [7]. The ideas thereof matured, together
with the non-perturbative pattern enlightened by [6] led to a first at-
tempt to produce an organised picture in [8]. Many ideas subsequently
developed were already there, although often confused, and sometimes
not so consistently worked out. The following years have been there-
fore devoted to a deep reconsideration of the whole scenario, which led,
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step by step, to the point of view here presented. These steps include
the investigation of the consequences of the time dependence of masses
and couplings [9], and the recognition that the scenario that was being
developed could be considered a generalization of the Feynman path
integral to include the geometry of space [10]. The investigation of
the long-time effects of time-depending energy scales on the interpre-
tation of palaeontological observations [11] went in parallel with the
investigation of the theoretical bases of the scenario from a more abs-
tract point of view. This made clear that, step by step, things were
evolving toward the construction of a new theory, underlying quantum
mechanics and general relativity [12]. This had striking implications,
ranging from cosmology (e.g. [13]) up to solid state physics, such
as a new approach to high-temperature superconductivity [14]. An
attempt to collect all this in an organised fashion was provided by
[15], followed by [16] and [17], whereas subsequent research, including
also [18], required an update, presented in [19, 20, 21].

After some years, during which, together with updates of previous
works, also [22] was produced, the state of the art of this research is
now presented in this more extended work, which is aimed at saving to
the reader the time of going through references, and trying to collect
pieces of information spread through the various updates of an in-
progress research. This should also allow to get more clearly the unity
and consistence of a research, in which all the aspects are parts of a
unique picture.
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1 Introduction

The search for a unified description of quantum mechanics and gene-
ral relativity, within a theory that possibly describes also the evolution
of the universe, is one of the long debated issues and open problems of
modern theoretical physics. The research is focused on finding the so-
lution of the problem, intended as an appropriate construction within
a specific theoretical framework (field theory, string theory, quantum
mechanics, or else). For instance, within string theory this means fin-
ding the right geometry on which to compactify the string in order to
produce a spectrum of particles, fields and interactions that reduces
to the one of the Weinberg and Salam Standard Model of elementary
particles at the electroweak scale. This is a way of proceeding some-
how by “trial and error”, in the hope that, once the result will be
obtained, it will also shed light onto unknown theoretical aspects and
lead to a deeper understanding of fundamental physics. However, the
fact that such a solution has not yet been found could be the signal
that this is a wrong way of proceeding. Perhaps, in order to progress,
one has first to go through more fundamental questions, and a path
toward the solution can be found not by looking for a result, but for
a set of fundamental requirements. Are all the conditions we usually
associate with quantum mechanics and relativity really fundamental?
Perhaps some of them are just effective approximations, valid in a
specific range of parameters, of something more general and funda-
mental. Let us suppose that, by proceeding by trial and error, we find
the right construction, the right model that gives us the physics we
want. In that case, we can try to understand what does it make of it
something special, besides the fact that it works. On the other hand,
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1 Introduction

since, as a matter of fact, we are not able to find the solution, maybe it
is wise to revert the argument, and try first to answer to the question:
what would allow to select it “a priori”, even before checking that it
works? If we can answer to such a question, we may hope to get a
hint on where to look for the solution. From this point of view, it
may be not necessary, even misleading, sticking on the requirement of
implementing in a unified theory the rules of canonical quantization
on one side, and imposing the bound on the speed of light, and the
Lorentz group of coordinate transformation, on the other side: both
quantum mechanics and relativity could show up as a consequence of
more general requirements and assumptions, and their “unification”
could occur at a more fundamental level, namely at a level in which
quantum mechanics and relativity are not yet “disentangled” from a
description in which both are in principle contained. Their unification
would then be based on the formalism of neither one of these theories.
A hint that this could be the case is provided by the fact that general
relativity, and therefore gravity, cannot be consistently quantized, in
the sense of applying the rules of quantum mechanics to some kind of
field theoretical description of the gravity zero modes, without encoun-
tering troubles. The relation of this hypothetical underlying theory
to quantum field theory and general relativity could be similar to the
transition from classical to quantum mechanics. There, the classical
description is only recovered as a large scale approximation, because
on the fine detail there is indeed a gap between the two descriptions.

String theory is widely considered to be the most legitimate candi-
date for building up a “theory of everything”. However, as it is it is an
“empty” theory: there is no rationale for a choice of the geometry for
its coordinates, other than the simple looking for a compactification
that produces the right spectrum (an “a posteriori” justification). By
the way, such a compactification has not been identified. This may
seem a rather technical issue, a matter of just further looking for. Ho-
wever, the failure in finding the right geometry could hide a deeper
problem, namely the fact that our expectations about what we must
find are wrong. This is a rather subtle point, so I try to explain it
more clearly. The common lore is that one must eventually find the
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spectrum and the interactions of the Standard Model of elementary
particles, a well tested and good working field theoretical model. In-
deed, the Standard Model works well in a certain subset of cases, but
presents some rather critical points and its predictive power is rather
limited. Since all its parameters are basically free, in most cases a test
of the model verifies the capability of fitting a set of experiments wi-
thin an appropriate choice of values of its parameters. This is certainly
a non trivial fact, nonetheless theoretically unsatisfactory, because it
is not a test of its pure predictive power. However, if it is true that in
a rough approximation the degrees of freedom of the Standard Model
can be safely considered as the basic ingredients of elementary par-
ticle physics, it is not necessarily true that so must be considered also
the details of their interactions. In particular, if the string scenario
is not simply an extension of a field-theoretical scenario, it is not ob-
vious that it must reproduce all the fields which are required in order
to make the field theoretical description of elementary particles, and
their interactions, consistent. Indeed, the field theoretical description
not only fails in providing a unified theory producing correct experi-
mental predictions (not just partial data fittings), but seems to show
also some inconsistencies. In the purpose of looking for the basic prin-
ciples on which to base an underlying theory, a look at these is a step
that can not be avoided.

Some critical points

To start with, one may wonder whether the entire description of
masses is plagued by a fundamental inconsistency: masses are source
of gravitation, therefore there cannot be a consistent (i.e. self- contai-
ned) quantum theoretical description of massive states without a quan-
tum theory of gravity (of course, beyond this first-order evidence, one
can also point out that already the fact in itself of speaking of energy
of these degrees of freedom implies by consistency also speaking of
gravity). Another possible theoretical inconsistency is given by the
assumption of working in an infinitely extended space(-time).
When combining the principle of causality, the finiteness of the speed
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1 Introduction

of light and the existence of a bing bang, i.e. a temporal origin of
the universe, it seems that requiring the physical description at any
finite time to be embedded in a space of infinite extension is in some
sense redundant, requiring more than what we need. How can one
test physics beyond the horizon set at a distance from the observer
corresponding to the distance travelled by light since the origin of the
universe? How can things that exist outside the causal region of an
observer influence/affect the physics he observes, his experimental ob-
servations/detections? Does it make sense to require such an infinity
condition? Of course, “beyond the causal horizon” phenomena can be
precisely the domain of a quantum theory. But then, on which basis
are these extra regions parametrized in the same way as the space-time
within our causal region, namely, in terms of classical coordinates to
be treated as parameters of an action, even in the case of a quan-
tum field-theoretical framework? On the other hand, abandoning this
apparently redundant, unnecessary requirement eliminates many re-
gularization problems, and puts in a completely different light several
issues, from the type of symmetries the fundamental physics possesses
(translation, time evolution), up to the fundamental description in
terms of fields, together with the entire formalism they imply (in-
finity/zero momentum regularization) etc...From absolute principles
they get immediately downgraded to mere approximations.

Since all these considerations are a consequence of classical argu-
ments (classical geometry, classical concept of causality, relativity),
quantum mechanics can in principle break this chain of implications.
It could therefore be that what has to be considered of finite extension
is just the classical part of space, provided one understands/properly
defines what “classical” and “quantum geometry” means. If quan-
tum geometry is intended as the quantum fluctuations produced by
the propagation of a canonically quantized classical field, such as the
graviton, a quantum universe, and a quantum space, cannot be much
different from its classical part: the quantum fluctuations of the geo-
metry are in any case based on a classical concept of space. However,
if one thinks of the classical space as the one whose horizon is “stirred”
by the propagation of massless fields (again, the graviton, or the pho-
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ton, or alike), and thinks of quantum mechanics somehow in the light
of the Feynman path integral, as the sum over all paths, including ta-
chyonic ones, it does no more appear unreasonable that to a classical
space of finite size does correspond a quantum counterpart of infinite
extension. The quantum geometry, whatever its precise definition may
be, is in this case not just a perturbation of a classical geometry: it
may be something that destroys the classical idea of space-time, and
the very idea of coordinates.

On the other hand, as it is defined, the Feynman path integral does
not seem suitable for a quantum theory including gravity, i.e. the
geometry itself of space-time. Being defined as a sum weighted by
the action, everything results to be triggered by an action principle.
This could be fine (and it is) as long as one does not bring into play
also the space itself in which the fields concurring to build up, with
their dynamics, the action, do live and propagate. An action is a
function of fields whose parameters are the coordinates of the space
they live in. As such, the action is indirectly a function of the geome-
try. However, summing up over all geometries weighted by an action
produces a staple which corresponds to a certain energy. As such, it
implies a modified geometry. The problem is therefore non linear, and
in principle non-perturbative. Moreover, one may wonder if thinking
of quantum gravity more or less as of a theory of quantized fields like
the graviton catches the deep essence of a quantum space-time. If
one thinks in terms of a space-time whose coordinates are themselves
quantized (and/or promoted to quantum fields), already the idea of
basing the physical description on the concept of action becomes in
itself meaningless.

A turning point

Should we then abandon the idea of action as the basic principle
on which to build any dynamics of space-time? Is time really to be
considered on a similar footing of space, as special relativity seems
to suggest, or is the construction of a space-time just an elegant but
approximated way of dealing with two things (space, and time) which
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1 Introduction

are however conceptually very different? In other words, is the flip
in the metric signature from Euclidean to Minkowskian the result of
a somehow “dynamic” symmetry breaking, or does it signal a deep
conceptual difference?

Let us try to go back some steps, and see where is it possible to
find solid land. From general relativity we learn that a geometry is
in itself equivalent to a distribution of energy. Let us stick on this
point, which looks very solid, and work it out more deeply. According
to Einstein’s relativity, also masses are energy packets. Everything
in the world can therefore be viewed in terms of energy. Dyna-
mics, and interactions, are then equivalent to changes of the local,
and global, geometry, occurring during time. At any instant of time,
the universe itself can therefore be viewed as a static point-wise as-
signment of energy amounts along space. Quantum fluctuations and
uncertainties can then be viewed as fluctuations among such a kind
of static assignments; dynamics, and time evolution, as a progress
through static energy assignments. Let us call each set of such point-
wise assignments, for each point of an infinitely extended space (which
of course for the moment is not yet a geometric space), a “geometry”.
In principle, each geometry potentially describes a universe. A geo-
metry does not have dynamics in itself (it is just a static assignment),
does not contain fields and/or particles or whatever degrees of free-
dom. However, a history of geometries can in principle correspond
to a physics of evolving degrees of freedom such as particles and/or
fields. The only intrinsic property a static geometry can have is the
recipe of its assignment of energy along space, to which one can asso-
ciate an entropy in a natural way: if we think of a universe ruled by
a principle that just blindly throws energy units on a target space, the
most entropic geometries will be those that possess a higher amount of
symmetry. Of course, before being properly defined, all these concepts
are just loose words, but these loose ideas served as starting point and
reference guide for developing the research that we are going to present
and discuss in this work. They can be viewed as an embryonic form
of change of paradigm: instead of looking for a geometry of space in
which to frame a set of fields, we try to define a universe in terms of

6



spaces intrinsically defined by geometries. It is like to start from a set
of static pictures, and see if, and in which sense, we can get a story
by grouping and interpreting them as the frames of a movie.

A history of geometries

Let us then make the hypothesis that the universe is the set (the
collection) of all geometries, intended as the collection of all the ran-
dom assignments of a certain amount of energy to a certain space,
simply ruled by the fact of being assigned randomly. We don’t have
therefore a rationale, except from a very basic and elementary, I would
say generic, one: there is no recipe, no rule, other than just the idea
that “all what can exist exists”. In this “whole” we don’t impose a
selection mechanism: we want rather to see whether in the “chaos”
of “everything is there” there are structures, produced by the simple
fact that, perhaps, certain geometries, or parts of geometries, are sta-
tistically favoured, i.e. to see whether, in the “blind throwing energy
all around”, some configurations occur more often than others. If this
occurs, by a simple statistical averaging these structures will deter-
mine the dominant shape, and perhaps also the space dimension, of
the universe. To this regard, it is legitimate to ask whether the simple
blind, random throwing of energy just ends up with a space evenly
covered by energy. Naively, one would say this is precisely the result:
after all, it is like saying that tossing a coin produces, on a large num-
ber of tosses, simply 50% heads and 50% tails. However, this occurs
because we have a recipe to distinguish not just tail from head, but
also top from bottom. Therefore we can say: “the result is what comes
out on the top”, and this can be either tail or head. But imagine we
do not have a way of distinguishing top from bottom... Indeed, top
can be distinguished from bottom only if there are asymmetries in the
universe, i.e. points with respect to which top and bottom are not
identical. In the absolutely empty space, there are no such asymme-
tries, and top is not distinguishable from bottom. In our problem, the
target space does not have in itself reference points allowing to dis-
tinguish between two energy distributions which are just “displaced”
with respect to each other. Energy distributions are classified through
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their only built-in property: their internal degree of symmetry. Refe-
rence points are defined by built-in asymmetries of a geometry, and
introduced in the space together with asymmetric energy assignments.
Let us now fix the amount of energy we throw on the target, and think
of stapling all the geometries on top of each other, starting from the
most symmetric one. Proceeding in the stapling by steps of decrea-
sing symmetry, by using the asymmetries introduced by the previous
geometry as reference point for placing the next geometry one builds
up a space in which all symmetries are broken. The space obtained by
superposing in this way the various geometries will have a symmetry
not larger than the intersection of all the symmetries of the stapled
geometries. Each further step in the stapling increases the breaking
of symmetry 1. Figures 1.1 and 1.2 illustrate this principle with an
example. Of course, all this has to be set more precisely, and it does
make only sense after we have specified some more details. For the
moment, just accept the idea, to see where we are going to. Indeed,
what we are doing is trying to see whether there can be a “built-in”
way of weighting geometries, which does not require the introduction
of external inputs such as an action, maybe together with further re-
quirements.

In this scenario, the existence of the universe is itself part of the
game: if we include in the possibilities also that of not throwing energy
at all, this is just one of the many logical possibilities, clearly statisti-
cally much less relevant than the existence of a geometry, just because
there are many more logical possibilities of arranging a non-vanishing
amount of energy than of having no energy, and therefore no geome-
try, at all. For the same reason, higher energies will produce more
geometries than lower ones. In particular, subregions of total energy
E ′ of a geometry corresponding to the distribution of a total amount

1Here is the key difference as compared to examples like the coin toss: in that case,
the coin is considered as inserted in a space working as external reference frame,
here we are defining and building the space, and the reference frame as built-in
into the space, through intrinsic properties. It is like saying that top and bottom
are defined by the coin itself, which knows only about “head” and “tail”. Top
and bottom can then only be defined in terms of head and tail. If we call “top”
the head, the head will all the time staple to head, to a 100% of head results, by
definition, and we will never end up with a 50/50 averaged heads-tails result.
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Figure 1.1: The superposition of two geometries produced by assigning
one energy unit to a space consisting of two units. A and
B are here the same geometry, because there is no external
point to serve as reference for a rotation, thereby enabling
to distinguish A from B.

Figure 1.2: This is not the superposition of two geometries as in fi-
gure 1.1, but one geometry given by the assignment of two
energy units to a space consisting of two space units.
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of energy E (where, obviously, E ≥ E ′) can be viewed as geometries
corresponding to a total amount of energy E ′. In this sense, we can
say that the set of all the geometries corresponding to a total energy E
“contains” the set of all the geometries corresponding to a total energy
E ′. This allows to associate an ordering through sets of geometries.
Indeed, one is tempted to call each set of all the geometries at a given
total energy E a “universe” U(E), and view the path through increa-
sing total energy as a time progress, a history of the universe, through
the identification of the total energy with the time: U(E) → U(t).
We obtain in this way a time ordering. The zero energy geometry,
the “non-existence of the universe”, is then just the trivial starting
point. It does not make sense to ask “how long” the universe “did not
exist” or, “pre-existed”, because, seen in this way, time is a built-in
property of the existing universe. So, we have now a “history” out
of static frames. However, the movie we obtain is not of the classical
type: instead of having a sequence of frames, we have a sequence of
collections, or staples, of frames. Can this be somehow considered a
“quantum movie”? Let us go on with the investigation of the universe
at each finete time/total amount of energy.

The Planck length

In order to investigate a possible physical content, we must first of
all introduce units of measure. For instance, by introducing a unit for
the energy, and then conversion constants to convert to time, space
lengths, etc... As it was for the case illustrated by the coin, here too
we must pay attention to not fall into the mistake of considering the
space, and its content, as immersed into something else, implicitly as-
sumed to play the role of reference system. This would produce the
misleading impression of being allowed to introduce a unit of measure
without necessarily breaking scale invariance. Introducing a unit of
scale breaks scale invariance, because by definition it introduces a refe-
rence point in a scale, therefore a preferred size: as we have seen when
talking about geometries, reference points are intrinsically introduced
only by the breaking of symmetries. It is easy to realize that the only
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way of introducing a unit of length, or energy, in an absolute, intrinsic
way, is to introduce aminimal length and a minimal energy. These are
such that any length, and any energy amount, can only be an integer
multiple of the unit. Measuring is therefore not just “comparing to”,
but “counting”. Otherwise, we would have a floating scale, comple-
tely meaningless until, through some mechanism introduced “ad hoc”,
one breaks scale invariance and sets a certain type of asymmetry as
a reference point. This is what is done “a posteriori” in any physical
theory build around certain experimental observations, in which some
objects are taken as reference points. One works in a world in which
symmetries are already broken, and tries to write a symmetric theory
together with scale units that only make sense in a regime of broken
symmetry. This is therefore a point that deeply distinguishes our ap-
proach, which instead aims at constructing a theory based on intrinsic,
almost “self defining” properties, in the search for the minimal set of
inputs one must impose to the most general set of axioms, in order to
produce a meaningful physical world.

Introducing a minimal size allows to count energy, space lengths
etc..., without the possibility of (making this operation trivial by sim-
ply) re-absorbing any rescaling into a redefinition of the units of mea-
sure. In this way we also obtain a true, meaningful history, or time
progress. Indeed, this is equivalent to saying that we assume to work
in a discrete world: space is discrete, with a lattice length unit, and
energy is also discrete, with an energy unit. Intuitively, one would
think that, since integers are a subset of the real numbers, we are
in this way truncating the range of values, and the precision in our
description of physics. The question is therefore: does this really
constitute a limitation in the investigation’s power of a theory? Is the
range of the physical phenomena reduced? A closer look at number
theory tells us that, as a matter of fact, real numbers are constructed
through a chain of arguments (limit procedures, Dedekind sections,
etc.) which are all based on the natural numbers. Although it may
sound strange, from a logical point of view this means that the in-
formation content of real numbers is not larger than that of natural
numbers. The key point is the extension of the theory to include the
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infinite. Starting from a theory defined on the discrete, but allowing
the range of values to run up to infinity, we effectively recover many
aspects of a theory described on the continuum. The key difference
is however that, in this case, the continuum is viewed as an approxi-
mation of the discrete, and not the other way around. In particular,
a whole bunch of technical problems of field theory, including ultra-
violet regularization, are absent by construction. But also the fact
of working with a universe characterized by a finite volume geometry
at any point of its history implies looking at several aspects of field
theory from a completely different perspective (see e.g. the issues re-
lated to topological monopoles, infrared regularization, etc...). Up to
conversions, this unit can be used to define the Planck mass.

Once introduced a unit, we can state that any geometry corresponds
to the distribution of a finite amount of energy. It will therefore des-
cribe a universe of finite extension. Nonetheless, since at any “time”
the number of such geometries is infinite, there is no bound neither to
the extension of space, nor to its dimension.

Classic and quantum space

Working with discrete and finite quantities allows to compare sym-
metries, and volumes of symmetry groups, and therefore define the
stapling of geometries, unambiguously, by introducing in a natural way
a weighted superposition of geometries. The weight of each geometry,
i.e. its weight in the phase space of all the geometries, is naturally
chosen to be proportional to the volume of its symmetry group. One
can therefore also speak of entropy of a geometry, introduced as usual
as the logarithm of the weight. Once all this is properly set up, geo-
metries can be compared through their entropy, and we get an insight
into the statistically averaged shape of the universe at each step of its
evolution.

In this approach, there is in principle no distinction between “geo-
metry” and “objects living in a space with a certain geometry”: eve-
rything is a geometry, and it belongs to our interpretation to single
out aspects that we assign to what we call “background space” and
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what we call “matter or field degrees of freedom” that move and inter-
act within, and with, this space. It turns out that the most entropic,
and therefore dominant, space dimension is three, with dominant geo-
metry of the universe the (discrete approximation of the) 3-sphere.
This is in fact the most symmetric geometry, and the one with the
highest entropy/energy ratio at fixed radius among the spheres of any
dimension. It turns also out that the less entropic geometries weight
much less. These facts allow us to assume the 3-sphere to represent
the classical geometry of the universe, on top of which the tower of
less entropic, less symmetric geometries, contribute to build up a sha-
ped world in which all symmetries are broken. The dynamics will
result from the tracking of the modifications of these shapes through
the history of the universe. The infinite staple of the more and more
singular geometries implies the existence of shapes which are quite far
away from what can be interpreted in terms of classical objects, and
their motion. Indeed, the whole staple accounts also for what we will
identify as quantum mechanical fluctuations of the classical space.

This construction seems therefore to implement a solution to the
remarks we raised at the beginning, namely having a classical space
bounded by a causal horizon, while allowing a quantum space to ex-
tend out of the causal region.

The speed of light, the Heisenberg’s uncertainties

With the previous definitions, the “universe” is set up: we don’t
need anything else than looking at what are the implications of the
founding statements. These imply that the entire information about
the universe is encoded in a partition function given by the sum over
all geometries ψ, weighted by their entropy S:

Z =
∑
ψ

eS(ψ) . (1.0.1)

Notice the “measure” of this sum: at the exponent there is not an
action, but trivially the entropy, defined as the logarithm of the weight,
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the statistical weight, corresponding to the volume of the symmetry
group of a geometry, intended as an assignment of energy units with
certain symmetry properties. The sum 1.0.1 can be rearranged as:

Z =
∑
E

Z(E) , (1.0.2)

where
Z(E) =

∑
Ψ(E)

eS(Ψ(E)) . (1.0.3)

In this way, the “time” dependence is made explicit. Expression 1.0.1
therefore does not look like (an extension of) a Feynman path integral.
Nonetheless, their equivalence can be shown to hold in a “classical
geometry” limit.

The partition function 1.0.1 implies that all what we observe is gi-
ven by a superposition of geometries, and whatever value of observable
quantity we can measure is smeared, is given with a certain fuzziness.
Evaluating the contribution of non-maximal entropy geometries at any
total energy step allows to see that the smearing quantitatively corres-
ponds to the Heisenberg’s inequality. This suggests the possibility of
interpreting this scenario in terms of quantum physics. Indeed, an ins-
pection of the geometries that arise in this scenario, the way “energy
clusters” arise, and their possible interpretation in terms of matter,
particles etc., allows to conclude that 1.0.1 can indeed be viewed as for-
mally implying a quantum scenario, once the Heisenberg’s uncertainty
is given a new interpretation. The Heisenberg’s uncertainty relation
arises here as a way of accounting not simply for our ignorance about
the observables, but for being these quantities ill-defined in them-
selves: all the observables that we may refer to a three-dimensional
world, together with the three-dimensional space itself, exist only as
“large scale” effects. Beyond a certain degree of accuracy they can
neither be measured nor be defined. The space itself, with a well
defined dimension and geometry, cannot be defined beyond a certain
degree of accuracy either. This is due to the fact that the universe is
not just given by one geometry, the dominant one, but by the super-
position of all possible geometries, an infinite number, among which
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many (an infinite number too) don’t even correspond to a three di-
mensional geometry. This interpretation of quantum mechanics does
not contradict any of the conclusions of the traditional interpretation:
from a practical point of view, on the physical systems in which tra-
ditional quantum mechanics is known to work, they lead to the same
results. However, this new approach works also in more general cases,
and potentially includes not only cosmology and gravitation, but the
basic structure and concept of geometry of the universe.

But there is more to the universe defined by 1.0.1. Inspecting the
rate of propagation of maximal entropy paths inside the universe of
geometries, as compared to the rate of energy/time evolution, allows
to identify the equivalent of the relativistic bound on the speed of
light. This is the maximal speed of propagation of coherent, i.e. non-
dispersive, information (tachyonic configurations also exist and contri-
bute to 1.0.2: their contribution is collected under the Heisenberg’s
uncertainty). The existence of this bound together with the Heisen-
berg’s uncertainty, allows us to recognize that this scenario incorpo-
rates both relativity and quantum mechanics.

The link between a basically classical theory of geometries (although
defined on the discrete) and the interpretation in terms of quantum
mechanics is here provided by the inclusion, and stapling, of an infi-
nite number of geometries at any step of the evolution of the universe.
The consequence is a new kind of dynamics, of which the classical,
and the probabilistic one of quantum mechanics, turn out to be ap-
proximations valid in appropriate limits.

The dynamics

The dynamics implied by 1.0.2 is neither deterministic in the ordi-
nary sense of causal evolution, nor probabilistic. We may rather call it
“determined”, although impossible to know beyond a certain degree of
approximation. According to our definition of time and time ordering,
at any time the actual superposition of geometries does not depend
on the superposition at a previous time, because the actual and the
previous shape of the universe trivially are the superposition of all the
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possible geometries at their time. Nevertheless, on the large scale the
flow of the mean values of observables through the time can be ap-
proximated by a smooth evolution that we can, up to a certain extent,
parametrize in terms of the familiar concepts of motion and time evo-
lution. Since the stapled geometries are weighted by their entropy,
the evolution is driven by an entropic principle. As it is not possible
to exactly perform the sum of infinite terms of 1.0.2, and it does not
even make sense, because an infinite number of less entropic geome-
tries don’t even correspond to a description of the world in terms of
three dimensions, it turns out to be convenient to accept for practical
purposes a certain amount of unpredictability, introduce probability
amplitudes and work in terms of the rules of quantum mechanics.
These appear to be precisely tuned in order to embed the uncertainty,
that we formally identified with the Heisenberg’s uncertainty, into a
viable framework, which allows some control of the unknown by en-
dowing the uncertainty with a probabilistic interpretation. From this
point of view, we can therefore give an argument for the necessity of a
quantum description of the world: quantization appears to be a useful
way of parametrizing the fact of being the observed reality a super-
position of an infinite number of “states”. Once endowed with this
interpretation, this scenario provides us with a theoretical framework
that unifies quantum mechanics and relativity in a description that,
basically, is neither of them: in this perspective, they turn out to be
only approximations, valid in a certain limit, of a more comprehensive
formulation.

Spectrum and masses

In order to extract the physical content of 1.0.2 in terms of the fa-
miliar concepts of fields and particles, it is convenient to map into into
a string scenario, something possible in the continuum limit, once the
tower of geometries has been interpreted in terms of quantum fluc-
tuations around a reference geometry. Under these conditions, string
theory proves to be a legitimate approximation . However, the string
construction itself is no more “free”, as complained at the beginning of
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this discussion: it must be consistent with the theoretical premises of
this scenario, of which it must constitute a representation. Therefore,
in analogy with 1.0.2, instead of looking at just one string model, we
will consider stapling any possible string compactification. The pro-
perties of the physical spectrum will not be determined by just one
string realization, to be considered as “the right” string compactifica-
tion, but will come out as the average result of an entropy-weighted
sum over all string compactifications.

The usual approach to string theory imposes the compactification
of a certain amount of “internal” coordinates in order to achieve a des-
cription with a four-dimensional infinitely extended target space, to
be identified with the physical space-time. In the light of the previous
discussion, if we want a correspondence with the universe of geometries
we have no reason to require the space-time to be infinitely extended:
also the four-dimensional space-time must be of finite extension, i.e.
compact. This requirement puts the space-time on the same footing
as the rest of the string target space even after string compactifica-
tion. There is no external intervention to single it out. What is then
the distinction between internal string space, and space-time, in an
anyway compact space? We identify space-time as the part of string
target space in which there are moduli, i.e. degrees of freedom corre-
sponding to freely adjustable coordinates: they are the candidates to
describe an expanding universe in a scenario in which the expansion
is not driven by a built-in time-dependence of fields, but by an orde-
ring like the entropy-driven total-energy ordering of the geometries we
have just introduced. This is not the case of a twisted space. Stapling
string compactifications, the dimension of space-time will therefore be
set by the intersection of the “non-twisted” spaces, i.e. by the mi-
nimal surviving amount of coordinates whose moduli are not frozen.
Is this a vanishing set? In order to answer to this question, it is not
enough to look at the single string constructions: it could be that the
coordinates we are looking for are simply non-perturbatively realized.
However, if one admits that, through string-string duality, one can in-
vestigate the properties of the underlying theory of which the various
string constructions represent dual slices, then such an analysis be-
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comes possible, and it turns out to statistically favour precisely three
space coordinates, suitable for building-up a four-dimensional space-
time. This is a rather remarkable fact, which parallels the fact that,
by stapling geometries, one does not obtain a shapeless, but a shaped
world: a similar argument works not only for the set of geometries re-
ferred to a single space dimension, but also when comparing different
space dimensions.

In such a world, supersymmetry turns out to be broken at a string-
string duality invariant scale, to be identified with the Planck scale.
Space is therefore curved, as it must be if it has to correspond to a
universe which is basically a 3-sphere. The lack of symmetry under
translation of the space-time coordinates due to the space-time com-
pactness implies a different normalization and therefore also a different
interpretation of string amplitudes. Now they are no more expected
to compute terms of a Lagrangian density, but global quantities in the
string space. In order to be compared with the usual terms they must
be divided by a space two-volume. In this way, a non-supersymmetric
vacuum with supersymmetry broken at the Planck scale is exactly
what is needed in order to produce the correct value of the cosmologi-
cal constant, which in this framework is not a constant, but depends
on the age of the universe through its dependence on the classical
volume of the universe. This energy density precisely corresponds to
the amount of energy required by consistency in order to describe a
sphere. On the other hand, since field theory is here not a consistent
theory but just an approximation, supersymmetry is no more requi-
red in order to stabilize mass scales: the latter, as well as the entire
spectrum of elementary particles and fields, are obtained through an
analysis of the relative weights in the phase space of all the geometries
by passing through the string representation of the set up.

The spectrum of particles and fields is obtained by investigating a
set of string duals. Being forcedly, by construction, perturbative, they
account for the physics on the tangent of the physical space. Owing to
the flatness of the tangent space, supersymmetric string constructions
come back into play as the string constructions in which to investi-
gate the elementary excitations of matter, and of the massless fields
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(graviton, photon) that “stir” the horizon of space. Moreover, any
perturbative construction corresponds to a decompactification limit,
in which, at least in some directions, space is infinitely extended. For
this analysis we can therefore use much of the known formalism and
tools of string and field theory. This allows to obtain information
about the degrees of freedom at a massless level. Masses are investi-
gated at a different level, after re-introduction of the information of
space compactness: they originate in fact from non-vanishing ground
momenta of a compact space. A mass hierarchy arises from the fact
that different particles originate from the breaking of symmetry produ-
ced by the stapling of string compactifications with a different weight
in the string phase space: the same ground momentum contributes
therefore to the mass with a different weight. The origin of mass
scales is therefore non-field theoretical; their values must be consi-
dered as “on-shell”, non renormalizing, and their stability is ensured
by definition/construction. Through the dependence of the ratios of
weights and of the ground momenta on the time-expanding classical
size of space, masses turn out to depend on the age of the universe.

It is always possible to write an effective action for the interaction
of particles and fields. However, this has nothing fundamental, it is
just a convenient parametrization of a non field-theoretical scenario,
valid around a certain point of the evolution of the universe. As such,
it does not need to be self-contained and consistent. In particular,
it does not need to be renormalizable as gauge theory with massive
states. As a consequence, there is also no need of a Higgs mechanism,
or of field-theoretical mechanisms that allow to dynamically stabilize
symmetries and parametrize their breaking, such as for instance the
Peccei-Quinn mechanism and Axions, etc...

If the field-theory effective action is not self-consistent, and string
amplitudes undergo a deep re-interpretation; if, moreover, any string
construction is just a perturbative slice of a basically non-perturbative
theory, how are then computed scattering and decay amplitudes? At
least conceptually, they must be computed by going back to the very
basic definition of physical evolution in terms of staples of geometries
evolving toward more and more entropic configurations. This means
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investigating the relative phase space weight of the corresponding phe-
nomena, something rather non-trivial. Luckily, a lot of work can be
recovered from traditional approaches, which remain a valid tool, even
though they are no more the final truth. In practice, we will use a
kind of mixed approach: starting from the known tools provided by an
effective action, and/or the tool of loop string amplitudes, one must
all the time keep in mind the limitations of these approaches, and
be ready to deviate/correct/abandon them, as soon as they lead to
contradictions with our premises, namely the entropic theoretical fra-
mework. At the time being, we do not have a general recipe: we will
illustrate case by case how this can be successfully carried out.

Only one free parameter: the age of the universe

A point of strength of this scenario is its predictive power. There is
no free parameter, everything being determined as a function of the
only running quantity, the total energy, or equivalently the age of the
universe. It results a theoretical framework that, in principle, can be
used to predict the inputs of whatever effective theory, and determine
their value. This includes the couplings of the elementary particles,
like the electromagnetic, weak, and strong coupling. Since the effec-
tive dynamics is driven by an entropic principle, the type and strength
of the couplings must be investigated by looking at the phase-space
volume of interaction processes: the larger is the increase of entropy
due to a certain interaction, the higher is its strength. The couplings
originate therefore as ratios of volumes of a time-evolving set up, and,
like masses, turn out to depend on the age of the universe. As such,
they enter an effective action as parameters which must be “upda-
ted” as the universe evolves. In this way, an effective action always
approximates the physics of one step of the evolution of the universe.
As such, it may work well in describing “instantaneous” interactions,
but cannot accurately account for phenomena that involve changes in
space and time, such as for instance the breaking of the time-reversal
symmetry. In this scenario there is by definition no symmetry un-
der time reversal. However, an effective action, being built on a set
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of fundamental massless fields and particles of a time-invariant spec-
trum, plus mass and coupling terms, whose values reflect the situation
at a certain point of the evolution of the universe, does not automati-
cally contain all the appropriate symmetry-breaking terms needed in
order to parametrize the time evolution. For instance, time-reversal
or parity breaking must be introduced “ad hoc” by appropriate me-
chanisms, that just “mimic” the basic absence of these symmetries at
the fundamental level, where the theory is not a field theory.

Comparing with experiments

Once the theoretical framework is set up, and we got the mass of
all the elementary particles, and their coupling strength, expressed as
functions of the age of the universe, we have a highly constrained set
of predictions that we can test against the experimental results. To a
first degree of approximation, the test is quite easy: it just requires to
plug into the various expressions the value of the age of the universe
converted in Planck units. The output is in astonishing agreement
with the experiments. Owing to the absence of freely adjustable para-
meters, this is a rather strong result. A comparison up to arbitrarily
higher order of precision is on the other hand more problematic, be-
cause in most (all) cases the experimental results are obtained through
very refined data fitting procedures carried out within a well defined
theoretical-phenomenological scheme. A true precision test of our pre-
dictions should be carried out in a similar self-contained way within
our theoretical scheme, something only possible after equivalently re-
fined computational tools have been developed also for this scenario,
something that goes far beyond the scope of our preliminary inves-
tigation. So, for the time being, we must content ourselves with a
mixed analysis, relying on the fact that, within our scenario, we are
able to identify in first approximation the degrees of freedom for which
the experimental results are provided. In this way, we are not only
able to recover the fact that the value of the fine-structure constant is
∼ 1/137, but also give an explanation of why this quantity is precisely
of this size: the answer is that there is no deep reason to produce such
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a number instead of, say, 1/52, or 1/18700000...We measure this value
because we measure it now, at a specific point of the evolution of the
universe for which this is the value of the fine-structure constant, which
is not a constant. Indeed, its value could be used as a measurement
of the age of the universe. The same goes for all the other quantities,
for instance the masses of the elementary particles. Indeed, in our
investigation we first use the cosmologically derived value of the age
of the universe in order to roughly compute the value of the neutron
mass. However, since the neutron mass is given with a higher experi-
mental precision than the age of the universe itself, we then revert the
argument and we use the experimental value of the neutron mass in
order to give a better estimate of the age of the universe, from which
to compute all the other masses, and couplings.

Symmetry breaking, Higgs, Axions, dark matter

Owing to the stapling of geometries of any degree of symmetry, in
this scenario all symmetries are broken. The massless fields of what
in field theory are identified as unbroken symmetries, namely the gra-
viton and the photon, are massless here too. They parametrize in fact
the vectorial and spinorial part of the expansion of the geometry on
the tangent, flat space associated to any point of the universe. Being
at any time the classical volume of the universe finite, quantum fields
must be considered as living in a box. Therefore, they always have a
non-vanishing ground momentum. In the case of massless states, the
ground energy/momentum scales with the inverse of the age (and the-
refore of the classical radius) of the universe. For the massive fields and
particles it scales instead like some root of the inverse of the radius.
Massless states can therefore extend as much as the entire classical
universe (the largest classical extension possible in this scenario, what
substitutes the infinite extension of field theory embedded in an infi-
nitely extended space-time). Massive states are instead “localized” to
a shorter scale.

We said that masses are not generated through the interaction with
a Higgs field. One may object that the Higgs field has been experimen-
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tally detected. Therefore, although interesting from a pure theoretical
point of view, this scenario is ruled out by experimental evidence. A
further astonishing aspect of this scenario is that it does not pre-
dict the existence of dark matter either. If the goal of this approach
is to reproduce the interpretation and parametrization of physics in
terms of the Standard Model’s degrees of freedom, or of extensions
thereof, here we are definitely wrong. However, if the goal is to ex-
plain, and, perhaps, predict experimental observations, things change
deeply. This scenario predicts the resonance around 125GeV, and ac-
counts also for the phenomena usually referred to the presence of dark
matter. Simply, it explains them differently, through effects that do
not exist in the traditional field theoretical approach. For instance,
the resonance at 125GeV (indeed, a bunch of resonances close to each
other) is the effect of the existence, for any interaction, in particular
in this case for the electromagnetic interaction, of S-dual components,
or phases, due to the non exact breaking of T-(S-)duality (indeed, in
this scenario no symmetry breaking is exact but only statistically rea-
lized). This allows to observe, at specific energy thresholds, scattering
resonances due to the production of electromagnetically strongly cou-
pled states. A similar phenomenon occurs also for the strong force:
in this scenario, the main phase of the colour coupling is strong (cou-
pling > 1), therefore pure strong coupling phase with no possibility
at all of observing the elementary degrees of freedom, all confined
into inseparable singlets. However, there is also a small amount of
an S-dual phase, which accounts for the possibility of experimentally
observing, at least in part, the internal structure of hadrons, as expe-
riments indicate. The presence of two phases, with a lower weight of
the “free field” phase, justifies also the lower importance of the colour
interaction in the phenomenon of CP violation, making unnecessary
explanations based on Axions fields. The aspects usually attributed
to the presence of dark matter are even more exceptional, and related
to the very particular quantum-relativistic geometry of the universe,
and its interplay with our perception/detection of information, carried
by photon and graviton.
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Cosmology, and cosmological constraints

By definition, this scenario describes the physics of a universe cen-
tered around the observer: the extension of the classical space is a
concept related to the observer. This is nothing new, it is precisely
what occurs to the causal horizon in general relativity. New is howe-
ver the fact that, here, the causal horizon is also the boundary of the
classical universe, and its extension sets the size of masses and cou-
plings. Therefore, not only time and length measurements undergo a
relativity principle, but also those of masses and couplings. Besides
the usual space-time relativity, one must consider also a “cosmologi-
cal” relativity of mass/energy measurements. A consequence is the
apparent acceleration of the rate of expansion of the universe, which
in this scenario is not accelerated, although it appears to be, as a
consequence of age/distance-related shifts in the spectrum of emitted
light. In this way one can explain, and account, for a red shift typical
of a matter dominated universe, and other deviations in the observed
spectra.

Constraints usually considered “model killers” such as the nucleo-
synthesis or the Oklo bound are here completely reconsidered. In this
scenario, they become harmless. The reason is that, since all mass
scales and couplings run approximately as different powers of the age
of the universe, constraints given by products and ratios of these quan-
tities close to one almost do not scale with time. If a constraint is
satisfied at a certain age, it is easily satisfied at any age.

Natural evolution and mutagenesis steps

Encouraged by the good agreement with the experimental results,
we may take seriously this approach and investigate in this light also
other domain of natural science. The fact that masses and couplings
(and therefore any energy scale) depend on the age of the universe,
irrelevant for instantaneous phenomena like particle scatterings, be-
comes relevant in all the natural phenomena which involve a long time
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span. It has therefore potential consequences also in the natural evo-
lution of species. The Darwin’s theory of evolution explains how, by
natural selection, mutated species overwhelm and prevail over other
ones, but says nothing about the biophysical mechanism that gives
origin to mutations. Under the hypothesis that mutagenesis is trigge-
red by some change in the molecular structure, one may argue that
such a change is induced by the absorption of energy from natural
radiation, in particular from the ultraviolet part of the spectrum of
the light arriving to the earth from all over the surrounding universe.
Energy absorption is then only possible if the energy corresponds to an
absorption band of both the spectrum of the target, and the emission
spectrum of a source. In absorption and emission spectra, frequencies
are built in series over certain fundamental, time-dependent values.
During the history of the universe, emission and absorption ground
frequencies may vary in asynchronous way, implying absorption reso-
nances at any time the emitted radiation hits an absorption frequency.
The consequence is a “step-wise” evolution, in which there are phases
of increased mutagenetic activity. Palaeontological observations seem
to confirm this type of behaviour.

Quantum geometry and HTS

This theoretical framework is not just a quantum gravity scenario,
in the sense of providing a theory of quantized gravitational inter-
actions, something that extends the theory of elementary particles
and interactions to include gravity, with consequences for high energy
theory and cosmology. As it is clear from 1.0.1, we are here in the pre-
sence of a quantum theory of space geometries. This is much more:
instead of seeking for a quantization of traditional degrees of freedom,
here we proceeded in the opposite way: we first built a generalized
theory of energy and space, and then, through the interpretation in
terms of geometries, we obtained a physical theory potentially able to
include any type of phenomenon. Geometries are energy clusters in
the universe, energy packets corresponding to elementary particles and
their interactions, organic molecules, and even any kind of materials,
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together with their physical properties. This scenario has therefore
implications in many more domains than just elementary particle phy-
sics and cosmology. We have just seen how this includes mutagenesis.
A further system, usually not associated with quantum gravity, are
superconductors. The dependence of the critical temperature of high-
temperature superconductors on the lattice structure of the material
is a typical case in which the quantum properties of the geometry
can not be neglected. Roughly speaking, quantum geometry results
in producing a geometry-dependent Planck constant: h → h(gμν), or
if one prefers h(R), where R is the curvature. On the other hand,
superconductivity is a matter of quantum delocalization of wavefunc-
tions. It is therefore reasonable to expect a dependence of the critical
temperature on the geometry of the crystal, such that the more the lat-
tice structure is complex, i.e. less smooth, the higher is the quantum
delocalization, and therefore also the critical superconduction tem-
perature. This relation can be successfully investigated. What we
obtain is a remarkable agreement between our prediction of the criti-
cal superconduction temperature, as derived from the analysis of the
geometry of the crystal lattice of a superconductor, and the experi-
mentally observed one. According to our analysis, high-temperature
superconductivity turns out therefore to rely on the very same BCS
mechanism as the low temperature one, the difference being only gi-
ven by a material-related different degree of quantum delocalization
of wavefunctions, a pure quantum geometry effect.

The universe of codes

In this theoretical set up, we build a quantum-relativistic world
starting from simple rules of counting and classifying logical sequences.
The assignments of geometries can be viewed as assignments of units
(that we interpret as energy units) to units that we interpret as units of
space. Altogether, these maps from a one-dimensional discrete vector
space to a multi-dimensional discrete vector space represent the set
of all the binary assignments of the type 0, 1 of a certain amount of
1’s to a certain string of 0’s. They represent therefore the set of all
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the binary codes. We may call them codes of information. Viewed in
this way, the universe is then the whole of information. In practice,
what we do is to propose an interpretation of logical structures in
terms of physics. What we see, and live in, and are part of, is a path
(that we call history) through the whole of information. The choice of
discrete quantities as the fundamental objects of this construction is
based on the consideration that numerable is more fundamental than
non-numerable: any other type of numbers is in fact derived and can
be logically expressed in terms of integer numbers. The scenario we
obtain is therefore by no means more restrictive than a construction
on the continuum: it is indeed the most comprehensive and general
one can think about.

In this context, it is natural to expect that number theory plays an
important role. In particular, it is intriguing to investigate the role
of prime numbers. The phase space of any process occurring in the
universe has a multiplicative structure. To any geometry, or subset
of geometry, is associated a weight given by an integer number. A
question is whether it is possible to associate a weight to any inte-
ger number, namely if any integer can be viewed as the weight of a
certain geometry. Since we are talking of volumes of finite symmetry
groups, one is tempted to give a positive answer to this question: a
number simply defines a group, i.e. a symmetry associated to a fi-
nite number of elements. A related question is then about the role of
non-factorizable weights, corresponding to prime numbers. From the
properties of the distribution of primes within the integers we know
that their “density” within the factorizable groups scales logarithmi-
cally: ρ ∼ π(n)/n ∼ lnn. The weakly coupled sectors of the physical
theory, like the sector associated to the electromagnetic interaction,
and the photon that parametrizes the expansion of the horizon in the
direction orthogonal to the tangent of space, are characterized by a
logarithmic weight, reflecting in the logarithmic expression of their
coupling strength as compared to the scaling of the space coordinates,
and the size of the universe. Since these sectors concern long range
interactions, it is tempting to associate them to symmetries that can-
not be split into products of local terms, but involve the whole space,
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connecting at once any region of space. Their weight would seem to
correspond to weights associated to prime numbers. Is there indeed
a correspondence of the two, namely, between long range interactions
and prime numbers, and between short range / strong coupling and
non-prime integers? The logarithmic behaviour of the weight of long
range interactions on one side, and the parallel logarithmic density of
primes within integers seem to suggest the existence of a deep rela-
tion. Is then the duality of behaviours “logarithmic” versus “power-
like” also the relation between perturbative and non-perturbative re-
gime, weak versus strong coupling behaviour? This would open up a
new perspective to the investigation of physical phenomena, and to
the identification of elementary structures. Perhaps prime numbers
play a fundamental role in a non-perturbative approach to interacting
theory, as indicates also the short analysis on the recursiveness of cer-
tain structures at different energy scales that we present at the end of
this work.
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The chapters of this work

In Chapter 2: “A physical universe from the universe of
codes” we start by setting up our framework, without assuming quan-
tum mechanics or relativity as fundamental requirements of a basic
physical construction. We introduce assignments of units to a dis-
crete vector space. We discuss symmetries and compute the entropy
for spheres of any dimension, to obtain that the favoured space is
a 3-sphere. We introduce the time ordering as an ordering through
increasing total energy, and the partition function of the universe of
discrete geometries. Subsequently, we derive the Heisenberg’s uncer-
tainty, and discuss the type of dynamics this implies. We discuss then
the speed of expansion of the universe, deriving the bound on the
speed of propagation of coherent information, and the Lorentz boost
in terms of transformation of entropies. The latter is the natural re-
presentation of coordinate transformations in a scenario in which also
space is quantized. Once recognized that we are in the presence of a
generalized quantum gravity theoretical framework, we discuss black
holes, to conclude that these objects do not exist as we imagine them
according to their classical formulation: going closer and closer to the
Schwarzschild radius the classical notion of space is completely lost.
The only such an object in the universe is the universe itself.

In Chapter 3: “The superstring representation of the uni-
verse of codes” we consider the large-energy limit, in which the
discrete universe can be approximated by a continuous description of
space and its geometry. In this limit, the physical scenario encoded in
1.0.1 naturally leads to a parametrization in terms of quantum super-
strings. We introduce the concept of entropy, and entropy-weighted
sum, in the phase space of the string constructions. We discuss the
relation between the non-perturbative formulation and the represen-
tation of space in the perturbative constructions of the string. In
particular, the perturbative limit is important because it allows to
identify the spectrum of free particles. We introduce the concept of
mass of elementary particles and fields, which in this scenario is rela-
ted to that of coupling. We discuss how these quantities are related
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to volumes in the phase space, and how they are computed as func-
tions of the age of the universe. Particular attention is devoted here
to the strong interaction in general terms, to the reason and meaning
of the existence of a strong force, besides an (electro-)weak one, dis-
cussing how its existence is necessarily required and implied by the
coupling with gravity. We also compute the only mass eigenvalue of
the strongly coupled universe. This will be associated to a state neu-
tral (i.e. a bound state, a singlet) for all the interactions, apart from
the gravitational one (in Chapter 4 this will turn out useful in order
to derive the neutron mass). We discuss then how in the field theory
limit the entropy-weighted sum 1.0.1 reduces to the Feynman path
integral. The last part of the chapter contains a general discussion of
the phenomenon of resonance in its various aspects, and how it arises
as another consequence of the only rationale ruling the universe in
this theoretical framework, namely the entropy in the phase space of
all the configurations. In particular, we consider the physics of par-
ticle colliders, and the resonance peaks in the proton-antiproton high
energy collisions.

Chapter 4: “The spectrum of the universe of codes” is the
most technical and extended chapter of this work. It contains the
investigation of the properties of the elementary particles and fields
as derived from the spectrum of the string representation of this sce-
nario. We start by investigating the string space through orbifold
constructions. Through this, we obtain information about the pattern
of progressive symmetry reduction, from which not only one obtains
the spectrum of the propagating fields and particles, but also the ra-
tios of their weights in the phase space, out of which all the mass
ratios are computed. We derive the number of coordinates which re-
main untwisted and therefore free to expand, three, matching with
the 3-sphere geometry of the geometric scenario. We pass then to a
detailed computation of the mass of all the elementary particles. The
latter turn out to correspond to the matter degrees of freedom of the
Standard Model, and the gauge bosons of the weak interactions. We
derive then the electromagnetic and weak coupling, and the coupling
of the colour force. We compute also the mass of proton and neutron,
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related to the mass eingenvalue of the strongly coupled universe dis-
cussed in chapter 3. For all the couplings and masses we derive the
dependence on the age of the universe, and the value at present time.
A section is devoted to the discussion of the CKM matrix; in parti-
cular, we discuss how the experimental results on the flavour mixing
and CP violation fit in this theoretical framework. We already said
that in this scenario there is no Higgs field; the last section is devoted
to a discussion of the S-dual, strong coupling phase of the electroma-
gnetic interactions, which precisely predicts the occurrence of a series
of resonances around 125GeV.

In Chapter 5: “Cosmology” we discuss the cosmological evolu-
tion of the geometry as it results from the string computation. If on
one hand this confirms the non-accelerated expansion of a 3-sphere,
the analysis through the string representation, and therefore the re-
sults acquired from the investigation of the time scaling of masses and
couplings of the elementary particles, allow to understand why such
an expansion appears to be accelerated, in the form typical of a matter
dominated universe. We discuss then the cosmic background radia-
tion, and the issues of dark matter and cosmological constraints like
the nucleosynthesis and the Oklo bound.

In Chapter 6: “The phases of the natural evolution” are
discussed the implications of time-evolving energy scales on the steps
of natural evolution. In particular, the phases of the evolution of
primates and the Paleozoic-Mesozoic-Cenozoic sequence are plotted
against the series of neighbouring resonances obtained under the hy-
pothesis that mutagenesis is induced by the absorption of radiation
from some natural source.

InChapter 7: “High-temperature superconductivity” we ad-
dress the problem of high-temperature superconductivity. We discuss
how in our quantum geometry scenario an effective Planck constant is
produced, that depends on the geometric properties of the material.
As a consequence, also the threshold of the transition between classic
and quantum regime depends on the geometry. Once established the
relation between geometry and degree of quantum delocalization of

31



1 Introduction

wavefunctions, we obtain a recipe to predict the ratio of critical tem-
peratures for a wide class of superconducting materials of which we
know the crystal structure, finding a remarkable agreement with the
temperatures measured experimentally.

In Chapter 8: “Prime numbers and the structures of the
universe” we discuss how prime numbers can be a base of elemen-
tary blocks that in certain cases, and for a certain type of physical
problems, could substitute the concept of asymptotically free state in
a non-perturbatively interacting theory. We investigate then the rela-
tion between the scaling of primes within the natural numbers, and the
analogous scaling of the couplings of long range forces, as compared
to those of short range.
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2 A physical universe from the

universe of codes

2.1 The set-up

2.1.1 Distributing binary information

Consider a generic vector space, consisting of the Cartesian product
of Mp1

1 × . . .×M
pi
i . . .×Mpn

n “elementary cells”. Since an elementary,
“unit” cell is basically adimensional, it makes sense to measure the
volume of this p-dimensional space, p =

∑n
i pi, in terms of unit cells:

V =Mpi
1 × . . .×Mpn

n . Although with the same volume, from the point
of view of the combination of cells and attributes this space is deeply
different from a one-dimensional space with V cells. To such a space
we can assign, in the sense of “distribute”, N “elementary” attributes,
N ≤ V . For the time being, we consider all Mi finite, so that the
volume V is finite. This will turn out to be a regularization: at the end
of the game this condition will be relaxed by taking the limitMi →∞
for every i. On the other hand, N has always to be considered finite.
In view of these considerations, it is therefore possible to assume that
Mi � N , ∀i. What are these attributes? Cells, simply cells: our space
is simply a mathematical structure of cells, and cells that we attribute
to cells in certain positions. In this way, we are constructing a discrete
function, an “assignment” x = f(y), where y runs in the “attributes”
and x belongs to the p-dimensional space. We define the phase space
{Ψ(N)} as the space of the assignments, i.e. the “maps” Ψ:

Ψ : N →
∏
i

Mpi
i , Mi ≥ N . (2.1.1)
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2 A physical universe from the universe of codes

For large Mi and N , we can approximate the discrete degrees of free-
dom with continuous coordinates: Mi → ri, N → r, with r 
 ri
∀i. We have therefore a continuous map Ψ : y ∈ {R} → �x ∈ {Rp}
from a one-dimensional space of volume r to a p-dimensional space of
volume

∏
rpii .

The assignments 2.1.1 are basically assignments of binary codes.
However, if we call N “total energy”, and the M “space coordinates”,
the Ψ(N) become assignments of geometries, and {Ψ(N)} is the phase
space of all the possible geometries at energyN . To stay general, let us
call them “configurations”. In order to appropriately compare configu-
rations through the corresponding geometries, we may think of fixing
a highest dimensionality of space, say P , fix a volume VP of this P -
dimensional space 1, and work with the subclass of configurations that
correspond to spaces of dimension p ≤ P , and volume smaller than VP .
In this way, all the geometries can be thought of as being embedded in
a common, higher space. We will eventually let P and VP go to infinity.
We want to investigate what is the entropy of a certain configuration
in this phase space. An important observation is that there do not
exist two configurations with the same entropy : if they have the same
entropy, they are perceived as the same configuration. The reason is
that we have a combinatorial problem, and, at fixed N , the volume
of occupation in the phase space is related to the symmetry group
of the configuration. In practice, we classify configurations through
statistics of combinations: a configuration corresponds to a certain
combinatorial group. Now, discrete groups with the same volume, i.e.
the same number of elements, are homeomorphic. This means that
they describe the same configuration. Configurations and entropies
are therefore in bijection with discrete groups, and this removes the
degeneracy. Different entropy = different occupation volume = dif-
ferent volume of the symmetry group; in practice this means that we
have a different configuration.

1Indeed, P ≤ V because it does not make sense to speak of a space direction with
no more than one space cell.
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2.1 The set-up

2.1.2 Flat and curved geometry

When we distribute occupation numbers along a discrete vector space,
there is a priori no intrinsic geometry: it is just a matter of pure com-
binatorics. However, starting from two dimensions, and above, it is
possible to consider curved space geometries. Trivially, in order for
this to make sense, the space must contain at least one cell occupied,
otherwise there is no way of distinguishing geometries in an empty
space. In our set up, geometry is therefore not an intrinsic property
of the target space, but it is related to the energy content. Indeed,
the presence of occupied cells has deep implications on the occupa-
tion probability of the remaining cells, because the entropy of the
configuration depends on its symmetries. It is therefore not irrelevant
the relative position of occupied cells. The presence of energy and
its distribution determines therefore the probability of finding energy
somewhere else. As we will see, we will eventually interpret energy
clusters as objects such as particles etc.... Trajectories in space will
be ruled by an entropy law. The presence of energy determines the-
refore dynamics and trajectories: the entropy of an energy cluster in
empty space is different from its entropy in presence of energy somew-
here else. In practice, to speak according to concepts familiar from
general relativity, the presence of energy curves the space. The weight
of a configuration. i.e. a distribution of energy in space, is related
to the symmetries of the energy-determined geometry. For space di-
mensions higher than one, the presence of energy tells us that we are
always in presence of a curved space. In this set up, there is no such
a thing like a flat space, outside of the simple, trivial case of N = 0
and/or d = 1. The most entropic configurations are the “maximally
symmetric” ones, i.e. those that look like spheres. We will therefore
first consider the contribution to 1.0.2 as due to the geometry of the
sphere.

In the following, we are interested in the large M , large N beha-
viour. In our language we will switch therefore forth and back from
the discrete to its approximation in the continuum. Moreover, since
we are interested in the scaling properties, we will neglect precise nu-
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2 A physical universe from the universe of codes

merical coefficients. The weight in the phase space will be given by
the number of times a sphere can be formed by moving along the sym-
metries of its geometry, times the number of choices of the position of,
say, its centre, in the whole space. Since we eventually are going to
take the limit V → ∞, we don’t consider here this second contribu-
tion, which is going to produce an infinite factor, equal for each kind
of geometry, for any finite amount of total energy N .

2.1.3 Entropy of spheres

Let us start by considering the entropy of a 3-sphere. Curving the
space implies a non-trivial interpretation of the boundaries of the
energy distribution, as seen from a higher-dimensional embedding
space 2. This in general enhances the amount of symmetry. In or-
der to evaluate the weight, we first investigate what happens for small
increments of N . This necessarily means that we work on the tangent
space. Consider the “differential equation” (more properly, a finite
difference equation) of the increase in the number of combinations
when passing from m to m+1. Owing to the multiplicative structure
of the phase space (composition of probabilities), expanding by one
unit the radius, or equivalently the scale of all the coordinates, adds
to the possibilities to form the configuration for any dimension of the
sphere some more ∼ m + 1 (that we can also approximate with m,
because we work at largem) times the probability of one cell times the
weight of the configuration of the remaining m (respectively m − 1)
cells. Depending on the scale of energy as compared to the space scale
(in familiar words, on the value of conversion units such as c and �), in
general the sphere will not be a portion of space fulfilled with energy,
i.e. entirely consisting of cells each one occupied by a unit of energy
(radius mfulfilled ∼ N1/3, density ∼ N/m3

fulfilled = N/N = 1), but will
be a “sparse” space of lower density. Along this space, moving by a
step shorter than the distance between cells occupied by an energy

2Think for instance of the relation between any stereographic representation of a
2-sphere in the two-dimensional plane, as compared to its representation in three
dimensions.
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2.1 The set-up

unit will not be a symmetry, because one moves to a “hole” of energy.
It is not difficult to realize that the effective symmetry group will have
a volume V that stays to the volume Vfulfilled of a fulfilled space in the
same ratio as the respective energy densities, V/Vfulfilled =

(
N/m3

)
/1.

We must therefore normalize the computation of the scaling multi-
plying by the energy density while at the same time fixing the scale
of energy units as compared to the space units, N/m, i.e. dividing by
this last factor. Taking into account all these effects, we obtain the
following scaling:

W (m+ 1)3 ∼ W (m)3 × (m+ 1)3 × N

m3
× m

N
. (2.1.2)

The factor N/m3 is the density of the 3-sphere, while m/N fixes the
energy-to-space coordinate scale 3. Expanding W (m + 1) on the left
hand side of 2.1.2 as W (m) + ΔW (m), and neglecting on the r.h.s.
corrections of order 1/m, we can write it as:

ΔW (m)3
W (m)3

� m. (2.1.3)

Since we are interested in the behaviour at large m, we can approxi-
mate it with a continuous variable, m → x, and approximate the
finite difference equation with a differential one. Upon integration, we
obtain:

S3 ∝ lnW (m)3 ∼
1

2
m2 . (2.1.4)

Fixing the radius/energy scale to 1, i.e. setting m = N , implies that
the energy density of the 3-sphere scales as 1/N2. We obtain in this
way an equivalence between energy density and curvature R:

ρ3(N) ∼ 1

N2
∼= 1

r2
∼ R(3) . (2.1.5)

3Indeed, in 2.1.2 there should be one more factor: when we pass from radius m to
m+1 while keeping N fixed, the configuration becomes less dense, and we loose
a symmetry factor of the order of the ratio of the two densities: [m/(m+ 1)]3 ∼
1 +O(1/m).
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2 A physical universe from the universe of codes

This is basically the Einstein’s equation relating the curvature of space
to the tensor expressing the energy density. Indeed, here this relation
can be assumed to be the physical description of a sphere in three di-
mensions. In order to preserve good properties of reduction of spaces
to subspaces (Sp → Sp−1 → . . .→ S2), we must impose a generaliza-
tion of the above relation as condition in a generic dimension p ≥ 2
for having the geometry of a sphere 4:

ρp(E) ∼ N

mp
(p)

∼= 1

m2
(p)

. (2.1.6)

In two dimensions, 2.1.6 implies N = 1 (up to some numerical coeffi-
cient). This means that, although it is technically possible to distri-
bute N > 1 energy units along a 2-sphere of radius m > 1, from a
physical point of view these configurations do not describe a sphere.
Indeed, if we think of embedding the 2-sphere in three flat dimen-
sions, we can view the energy E = N as the “gravitational charge”
of a central force with Coulomb-like potential, the usual gravitational
potential V ∼ M/R, where R is the radius of a 2-sphere enclosing the
region with mass M . According to the Gauss’s theorem, the flux of
the gravitational field through the 2-sphere is equal to the mass M ,
which in our case is the total energy. But the flux is Φ ∼M/R2×R2,
independent on the radius. The gravitational charge, i.e. the mass,
or total energy, can therefore be thought of as being concentrated at
the center of the sphere. In this discrete scenario at the center we
have just one space cell, on which we can accommodate only one unit
of energy. The only 2-sphere in two dimensions is therefore the one
with total energy N = 1. More energy units produce other kinds of
geometries. In dimension p ≥ 3 equation 2.1.6 is solved by:

m(p) ∼ N
1

p−2 (< N for p > 3) , (2.1.7)

4We recall that we omit here p-dependent numerical coefficients which characterise
the specific normalization of the curvature of a sphere in p dimensions, because
we are interested in the scaling at generic N , and m, in particular in the scaling
at large N .
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and the equivalent of 2.1.2 reads:

Wp(m(p) + 1) ∼ Wp(m(p))× (m(p) + 1)p × N

mp
(p)

, (2.1.8)

where we omit the scale-fixing factor that was present in 2.1.2, because
we want to refer all geometries to the units of the three-dimensional
one. We are going to take this into account by inserting the condition
for the p-sphere expressed in equation 2.1.6. We obtain:

Wp(m(p) + 1) ∼ Wp(m(p))× (m(p) + 1)p × 1

m2
(p)

, (2.1.9)

which leads to the following finite difference equation:

ΔW (m(p))p

W (m(p))p
≈ mp−2

(p) . (2.1.10)

This expression obviously reduces to 2.1.3 for p = 3. Proceeding as
before, by transforming the finite difference equation into a differential
one, and integrating, we obtain:

S(p≥2) ∝ lnW (m(p)) ∼
1

p− 1
mp−1

(p) , p ≥ 3 . (2.1.11)

This is the typical scaling law of the entropy of a p-dimensional black
hole (see for instance [23]). From expression 2.1.11 and 2.1.7 we derive:

S(p≥3)|N ∼
1

p− 1
mp−1

(p) ∼
1

p− 1
N

p−1
p−2 . (2.1.12)

This is the part of entropy that is due to the intrinsic symmetry of the
p-dimensional sphere. In order to compare them within the higher-
dimensional embedding space, we must think of lower-dimensional
spheres as embedded in subspaces of the higher dimensional space.
At any time we increase by one unit the dimension of the embedding
space, from p to p + 1, to the intrinsic entropy we must add a term
which accounts for the fact that the p-dimensional subspace can be
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2 A physical universe from the universe of codes

embedded in the p+1 dimensional rotated by various possible angles.
The possible rotations occur along the p axes of the embedded sub-
space. The weight of the p-dimensional sphere gains therefore a factor
of order ∼ mp

(p) ∼ N
p

p−2 . The weights of the spheres stay therefore in

ratios of order:

W(p)(N)

W(p+1)(N)
≈ N

p
p−2 × exp

[
1

p− 1
N

p−1
p−2 − 1

p
N

p
p−1

]
. (2.1.13)

By increasing p, as a function of N they are therefore exponentially
suppressed with respect to each other. In particular, the largest sup-
pression factor occurs between the three-dimensional sphere and the
higher ones. Below three dimensions we cannot speak of spheres out of
a trivial, formal sense. In two dimensions expression 2.1.8 can still be
integrated if we intend the configuration as a collection of N spheres
of energy = 1. We obtain:

W2(N) ≈
[
e1
]N

= eN , (2.1.14)

which is exponentially suppressed as compared to the 3-sphere. For
p = 1 we cannot have anymore a curved space. We expect therefore
no exponential dependence of the weight on N , but rather a power-
law relation. From a formal point of view, we can still plug in 2.1.8
a “curvature” 1/m2, and obtain ΔW1/W1 ∼ 1/N , that integrates to
W1 ∼ N . However, to be more precise, we must consider that we are
no more working on a linearization, i.e. on the tangent space to a point
of a curved space, and expression 2.1.8 can no more be approximated
by a differential equation. There is therefore no exponentiation of the
dependence on N , which remains of power-law type. In both the p = 2
and p = 1 cases, the weights are exponentially suppressed as compared
to the three-dimensional sphere. All this allows us to conclude that:

At any energy N , the most entropic configuration is the one cor-
responding to the geometry of a 3-sphere. Since in any dimension
the sphere is also the most entropic geometry, three dimensions are
statistically “selected out” as the dominant space dimensionality.
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2.1.4 The “time” ordering

A property of {Ψ(N)} is that, if N1 < N2, ∀Ψ(N1) ∈ {Ψ(N1)}
∃Ψ′(N2) ∈ {Ψ(N2)} such that Ψ′(N2) � Ψ(N1), something that, with
an abuse of language, we write as: {Ψ(N2)} ⊃ {Ψ(N1)}, ∀ N1 < N2.
It is therefore natural to introduce an ordering in the whole phase
space, that we call a “time-ordering”, through the identification of
N with the time coordinate: N ↔ t. We call “history of the uni-
verse” the “path” N → {Ψ(N)}. This ordering turns out to naturally
correspond to our everyday concept of time-ordering. In our normal
experience, the reason why we perceive a history basically consisting
in a progress toward increasing time lies on the fact that higher times
bear the “memory” of the past, lower times. The opposite is not true,
because “future” configurations are not contained in those at lower,
i.e. earlier, times. But in order to be able to say that an event B is the
follow up of A, A �= B (time flow from A→ B), at the time we observe
B we need to also know A. This precisely means A ∈ {Ψ(NA)} and
A ⊂ A′ ∈ {Ψ(NB)}, which implies {Ψ(NA)} ⊂ {Ψ(NB)} in the sense
we specified above. Time reversal is not a symmetry of the system 5.

2.1.5 How does a shape of space arise

In this set-up configurations are basically identified by their symme-
try group. Configurations that describe the same geometry, but are
“rotated” with respect to each other as compared to an external refe-
rence frame, actually describe the same configuration. The reason is
that there is no “external frame”: reference points are defined through
the intrinsic asymmetries of the configurations themselves. Reference
points are introduced through asymmetries. Starting from the most
entropic one, we progressively obtain all the less entropic configura-
tions by “moving” away the more and more units of energy to form
less and less symmetric configurations, also walking through different
dimensions. In this way, one obtains a tower of asymmetric configu-

5Only by restricting to some subsets of physical phenomena one can approximate
the description with a model symmetric under reversal of the time coordinate,
at the price of neglecting what happens to the environment.
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2 A physical universe from the universe of codes

rations “stapled” on the point at which the first asymmetry has been
introduced. This point is therefore a reference point, that we assume
to be the point of the observer. The superposition of configurations
does not produce therefore a uniform universe, but a kind of “spon-
taneous” breaking of any symmetry. From the property, stated on
page 34, that at any time T ∼ N there do not exist two inequivalent
configurations with the same entropy, and from the fact that less en-
tropic configurations possess a lower degree of symmetry, we obtain
that:

• At any time T the average appearance of the universe is that of a
space in which all symmetries are broken.

As there is no external frame, in this framework there is also no
external observer: an observer is a “local inhomogeneity” of space, and
necessarily belongs to the universe. The observer is only sensitive to
its own configuration, in the sense that he “learns” about the full space
only through the superposition of configurations he is made of, and
their changes. For instance, he can perceive that the configurations of
space of which he is built up change with time, and interprets these
changes as due to the interaction with an environment.

2.1.6 Mean values and observables

At any time T ∼ N in the “universe” given by {Ψ(N)} the mean
value of any observable quantity O is the sum of the contributions
to O over all configurations Ψ, weighted according to their volume of
occupation in the phase space:

< O > ∝
∑
Ψ(T )

W (Ψ)O(Ψ) . (2.1.15)

We have written the symbol ∝ instead of = because the sum on the
r.h.s. is not normalized. The weights don’t sum up to 1, and not even
do they sum up to a finite number: in the infinite volume limit, they
all diverge 6. However, as we discussed in section 2.1.1, what matters

6As long as the volume, i.e. the total number of cells of the target space, for
any dimension, is finite, there is only a finite number of ways one can distribute
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is their relative ratio, which is finite because the infinite volume factor
is factored out. In order to normalize mean values, we introduce a
functional that works as “partition function”, or “generating function”
of the universe:

Z def
=

∑
Ψ(T )

W (ψ) =
∑
Ψ(T )

eS(Ψ) . (2.1.16)

The sum has to be intended as always performed at finite volume. In
order to define mean values and observables, we must in fact always
think in terms of finite space volume, a regularization condition to
be eventually relaxed. The mean value of an observable can then be
written as:

< O >
def≡ lim

V→∞

1

Z
∑
Ψ(T )

W (Ψ)O(Ψ) . (2.1.17)

Mean values therefore are defined through an averaging procedure in
which the weight is normalized to the total weight of all the configu-
rations, at any finite space volume V .

2.1.7 Summing up geometries

Owing to the exponential suppression of any weight of a non-three-
dimensional geometry, the mean value of the energy density is basically

energy units. In the infinite volume limit, both the number of possibilities for the
assignment of energy, and the number of possible dimensions, become infinite.
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the one measured in three dimensions:

〈ρ(E)〉 =
1∑

Ψ(N)W (Ψ(N))|d=3 +
∑

Ψ(N)W (Ψ(N))|d�=3

×

⎛⎝∑
Ψ(N)

W (Ψ(N))ρ(E)Ψ(N)|d=3

+
∑
Ψ(N)

W (Ψ(N))ρ(E)Ψ(N)|d�=3

⎞⎠
=

∑
Ψ(N)W (Ψ(N))ρ(E)Ψ(N)|d=3 + O

(
e−N

)∑
Ψ(N)W (Ψ(N))|d=3 + O (e−N)

≈
∑

Ψ(N)W (Ψ(N))ρ(E)Ψ(N)|d=3∑
Ψ(N)W (Ψ(N))|d=3

+O
(
e−N

)
. (2.1.18)

We can therefore concentrate our analysis on three dimensions. Since
the larger contribution to the mean value of the energy density is
provided by the 3-sphere, we write 2.1.18 as:

〈ρ(E)N〉 = 〈ρ(E)N〉|S3 + [d = 3 corrections] + O
(
e−N

)
≈ 1

N2
+ [d = 3 corrections] . (2.1.19)

Let us now consider the contribution of geometries less symmetric than
the sphere. In order to see what is the order of reduction of weight
produced by displacing one energy unit one step away from its position
on the sphere, consider the following: moving one energy unit by one
step, one creates a “hole” in the former position and a neighbouring
peak of energy. This deformation breaks the full geometric symmetry
of the sphere. We assume that, as long as we depart by just one step
away from the sphere, it is a reasonable approximation to consider
that this leads to a reduction by a factor ∼ N3, the volume of the
sphere. Since we have in total N units of energy, we have N equivalent
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possibilities of realizing this deformation. The overall reduction factor
is therefore ∼ N×1/N3 = 1/N2. We can figure out what is happening
if we represent the configuration with the unit of energy displaced from
A to A′, a unit of space aside, as the superposition of the sphere plus
the configuration in which the energy unit is removed from A (which
therefore subtracts a certain amount of weight), plus the configuration
in which the unit of energy is added in A′. In order to estimate the
weight of this latter, we consider taking away a pair of units, AB, and
add then the pair A′B. Indeed, the choice of B is irrelevant, as it is
easy to see that the difference in weight between [−(AB)+(A′)B] and
[−(AC) + (A′)C] only depends on the distance (AA′). Therefore, one
can think of averaging over all the possible sums [−(AB) + (A′)B]:

W (A′) =
1

N3
×

N3∑
i=1

[−W (ABi) + W (A′Bi)] . (2.1.20)

The weight of these configurations is simply the weight of a pair of
units. We obtain therefore:

W (A′) ∼ O(1) . (2.1.21)

Since we can play this game with all the N units of energy of the
sphere, we finally obtain:

W ′(N + 1) = N ×
(
W(3)(N) × W (A′)

)
≈ N ×

(
1

N3
eN

2 × O(1)
)

≈ O
(
eN

2

N2

)
, (2.1.22)

thereby recovering as a result the previously estimated suppression
factor of order 1/N2.
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When we displace a second energy unit from the sphere, B → B′,
the distance and position of B′ relative to A′, the previously displa-
ced one, are no more irrelevant in determining the weight, because we
start from a situation of already broken symmetry. Since in the phase
space we have ∼ N3 (the volume of the sphere) positions in which to
equivalently realize the configuration (A′B′), a normalization 1/(N3)
factor is needed, leading to a further 1/(N3) suppression factor in front
of W ′. Analogously to the previous case, the weight of the subtrac-
ted and added configurations results easier to compute if we think of
subtracting from the sphere, and then adding back, one more unit of
energy C, and averaging over C:

W ′′(N + 1)) = N × {W ′(N) × W (A′B′)}

� N ×
{

1

N3
W ′(N)

× 1

N3

N3∑
i=1

[−W (A′B(Ci)) + W (A′B′(Ci))]

⎫⎬⎭
≈ N × 1

N3

{
N

N3
W (N − 1)×O(1)

}
× O(1)

≈ O
(

N2

(N3)2
× eN

2

)
, (2.1.23)

that is:

W ′′ ≈ O
(

1

N2
W ′

)
≈ O

((
1

N2

)2

W

)
. (2.1.24)

In these expressions, we have identified in the exponentials the num-
bers N + 1, N and N − 1, because in our derivation we re-normalize
at any step to keep constant the radius of the sphere, even when sub-
tracted of a small (as compared to N) number of points. Therefore,
there is no exp−2N suppression factor coming from the squares in
the exponential.
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Similar considerations can be applied also to the further steps of
reduction of symmetry, that therefore lead to a series of weight sup-
pressions of order ∼ 1/N2. This is approximately true at least for the
first steps of reduction. Going on displacing cells, there can occur also
a partial restoration of symmetry. However, even in the case of recons-
tructing some product of spheres of smaller radius, something that can
only happen once all the energy unit points have been so much dis-
placed from their initial position on the sphere and rearranged, that
we can no more use our approximation of keeping as reference point
the weight expN2 as the starting point of differential, power-like sup-
pressions, the weight of the configuration is highly suppressed. For
instance, in the case of a product of spheres

∏
i Si of radii Ri ∼ ni,∑

i ni = N , since
∑

i n
2
i = N2 − 2

∑
ninj �=i we have that the weight

W =
∏

iWi ∼ e
∑
n2
i is exponentially suppressed as compared to the

weight of the unbroken 3-sphere.

We can view the operation of reducing the symmetry by progres-
sively displacing energy by unit steps as a process of “soft breaking”
tuned by an order parameter, in which each step breaks a piece of
symmetry, leading to a suppression of the weight by at least a factor
of order 1/N2. Summing up all the contributions leads to a correction
which is of the order of the sum of an (almost) geometric series of
ratio 1/N2. Similar arguments can be applied to D �= 3, to conclude
that expression 2.1.19 receives all in all a correction of order 1/N2.
This result is remarkable. As we will discuss, the main contribution
to the geometry of the universe, the one given by the most entro-
pic configuration, can be viewed as the classical, purely geometrical
contribution, whereas those given by the other, less entropic geome-
tries, can be considered contributions to the quantum geometry of the
universe. From 2.1.19 we see that not only the three-dimensional term
dominates over all other ones, but that it is reasonable to assume that
the universe looks mostly like three-dimensional, indeed mostly like a
3-sphere. This property becomes stronger and stronger as time goes by
(increasing N). The d=3 corrections of expression 2.1.19 are roughly
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of order 1/N2 as compared to the first term:

〈ρ(E)N〉 ≈ 〈ρ(E)N〉S3

[
1 + O

(
1

N2

)]
. (2.1.25)

In general,∑
ψ

Wψ(N) = W (N)S3

[
1 + O

(
1

N2

)
+ O

(
1

N4

)
+ . . .

]
.

(2.1.26)
From the fact that the maximal entropy is the one of a 3-sphere, and
scales as S(3) ∼ N2, we derive also that the ratio of the overall weight
of the configurations at time N − 1, normalized to the weight at time
N , is of order:

W (N − 1) ≈ W (N) e−2N . (2.1.27)

At any time, the contribution of past times is therefore negligible as
compared to the one of the configurations at the actual time. This tells
us that instead of 2.1.16 we could as well define the partition function
of the universe at ”time” E as the sum over all the configurations at
past time/energy E up to E :

ZE =
∑

ψ(E≤E)
eS(ψ) . (2.1.28)

2.2 The uncertainty principle

According to 2.1.17, quantities which are measurable by an observer
living in three dimensions do not receive contribution only from the
configurations of extremal or near to extremal entropy: all the pos-
sible configurations at a certain time contribute. Let us consider what
does in practice means measuring the energy involved in a certain ex-
periment. A measurement is the detection of the changes occurring in
the shape, or geometry, of a certain subregion of the universe. Since
the only thing one can do is detecting changes, it therefore necessarily
implies a certain duration in time. The first thing one can think of
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measuring is the energy of the universe itself (for instance by measu-
ring its curvature). For this, one needs a time long as much as the
age of the universe itself: Δt = N . From expressions 2.1.25, 2.1.26
one can see that the corrections to the ground value 〈E〉0 = N are of
order 1/N2, giving:

〈E〉 = N + N ×
[
O
(

1

N2

)
+ higher orders

]
≥ N +

N

N2
. (2.2.1)

Considering that not only 〈E〉0 = N but also Δt = N , this expression
can be written as:

Δ〈E〉 ≥ 1

Δt
. (2.2.2)

Let us now consider a local experiment. This involves just a subre-
gion of the whole universe. In general, the geometry is produced by
a staple of configurations locally very far from the simple, “empty”
space characterising the ground geometry of universe, the 3-sphere.
Accordingly, also its entropy is very suppressed as compared to the
entropy of the sphere. On the other hand, when one measures a lo-
cal experiment, the contribution of the rest of the universe, and the
ground contributions to the geometry, are implicitly subtracted from
the description and the measurements. This operation is made pos-
sible by the properties of factorization of the phase space. Owing to
its multiplicative structure, we can think of the higher order correc-
tion to the ground shape of the experiment as being produced by local
subsets of the whole geometries of the universe, for which we can ap-
ply the result 2.1.26, this time restricted to a sub-factor of the weight,
corresponding to the local region of space of radius N ′ (N ′ < N) large
as much as the duration of the measurement: N ′ = Δt′. Reasoning as
before, we can conclude once again that, during the time interval Δt′,
the corrections to the energy of the experiment (i.e. of its geometry)
are at least of order of the corrections to the energy of a small universe
of radius Δt′:

Δ〈E ′〉 ≥ 1

Δt′
. (2.2.3)
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Notice that, in this case, E ′ does not need to be itself large as much
as the inverse of the time interval Δt′. What is large as much as the
inverse of the elapsed time is the minimal correction to the energy
of the small region, which, once subtracted of the geometry of the
experiment, can be compared to a small, “empty” universe. This
relation can be written as:

ΔEΔt >∼ 1 . (2.2.4)

This expression must be compared with the time-energy Heisenberg’s
uncertainty relation (introducing the Planck constant is here just a
matter of introducing units enabling to measure energies in terms of
time). In our case, it directly proceeds from the very definition of the
physical set up, i.e. from the fact that the evolution of the universe is
a history through superpositions of an infinite number of geometries.
The bound to an experimental access to the universe corresponds to
the limit within which such a universe is in itself defined. In this set
up,

• it is not possible to go beyond the uncertainty principle’s bound
with the precision in the measurements, because this bound corresponds
to the precision with which the quantities to be measured themselves
are defined.

2.3 Deterministic or probabilistic physics?

The scenario implied by the sum 2.1.16 is neither probabilistic in the
usual sense of quantum mechanics, nor deterministic according to the
usual meaning of causality. Rather, it is ”determined” at any time by
the partition function. The universe at time N ′ ∼ T ′ = T + δT ∼
N +1 is not obtained by running forward, possibly through equations
of motion, the configurations at time N ∼ T , it is not their “conti-
nuation”: it is given by the weighted sum of all the configurations at
time T + δT , as the universe at time T was given by the weighted
sum of all the configurations at time T . In the large N limit, we can
speak of “continuous time evolution” only in the sense that for a small
change of time, the dominant configurations correspond to geometries
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that don’t differ that much from those at previous time. With a cer-
tain approximation we can therefore speak of evolution in the ordinary
sense of (differential, or difference) time equations. Owing to the fact
that at any time the appearance of the universe is mostly determined
by the most entropic configurations, in the average

• the dynamics of the evolution of the system is of entropic type.

On the other hand, a full knowledge of the infinite terms of 2.1.16
is impossible, and, owing to the fact that configurations in any di-
mensions are taken into account, also ill-defined. From this point of
view, the probabilistic interpretation of the Heisenberg’s uncertainty
given in quantum mechanics seems a viable way of parametrizing the
unknown, reintroducing thereby a certain degree of predictability and
calculability. This is also the case of systems in which the asymmetries
are ”hidden” below the threshold of the uncertainty 2.2.4, and produce
therefore the impression of equal probability of equivalent situations,
like the two possible paths of an electron in the double slit experiment:
being able to predict the details of an event, such as for instance the
precise position each electron will hit on the plate, and in which se-
quence, requires knowing the function “entropy” for an infinite number
of configurations, corresponding to any space dimensionality at fixed
T ≈ N , for any time T the experiment runs on. Clearly, no computer
or human being can do that. If on the other hand we content our-
selves with an approximate predictive power, we can roughly reduce
physical situations to certain ideal schemes, such as for instance “the
symmetric double slit” problem. Of course, from a theoretical point of
view we lose the possibility of predicting the position the first electron
will hit the target (something anyway practically impossible to do),
but we gain, at the price of introducing symmetries and therefore also
concepts like “probability amplitudes”, the capability of predicting
with a good degree of precision the shape an entire beam of electrons
will draw on the plate. We give up with the “shortest scale”, and
we concern ourselves only with an “intermediate scale”, larger than
the point-like one, shorter than the full history of the universe itself.
The interference pattern arises as the dominant mean configuration,
as seen through the rough lens of this “intermediate” scale. In this
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scenario, quantum de-coherence is “built-in” in 2.1.16.

2.4 Relativity

As we discussed in sections 2.1.3–2.1.7, although the volume of the
target spaces of the maps Ψ(N) is eventually to be considered infinite,
V →∞, at any finite time the dominant configuration of the universe
corresponds to a 3-sphere of radius N ∼ T . Next to this, there is
a staple of many “almost spherical”, three-dimensional configurations
that, in the superposition, give rise to a space with energy clusters.
In the sum 2.1.16 there are also configurations which correspond to a
geometry not bounded within a region of radius N ∼ T , nor three-
dimensional. Indeed, for any V , there are configurations which “fulfill”
the volume. They contribute in the form of quantum perturbations,
all of them falling under the “cover” of the uncertainty principle, and
being therefore related to what we interpret as the quantum nature
of physical phenomena. All this can be interpreted in the following
way: at any finite time T we have a universe which is infinitely ex-
tended, but that can be organized by separating it into a “classical
part”, with a geometry looking like the interior of a black hole, with
a horizon placed at distance ∝ T , and a quantum part, which ac-
counts for the contribution of any other kind of configurations. Only
the classical part can be reduced to the ordinary geometric interpreta-
tion of space extended only up to a distance ∝ T . In this perspective,

• the space “outside” the horizon is infinitely extended, but it contri-
butes to the perception of a classical observer and to the values of
the observables defined in the three-dimensional classical space only
through the uncertainty of mean values, accounted for by the Heisen-
berg’s uncertainty.

In the following we want to see how in this universe Einstein’s special
(and general) relativity are implied as a particular limit, in which one
considers just the classical part of space.
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2.4.1 From the speed of expansion of the universe to a maximal speed
for the propagation of information

The classical space at time N corresponds to a universe of radius
∼ N , with total energy N . It expands at speed 1. Indeed, we can
introduce a factor of conversion from time to space, c, and say that,
by choice of units, we set the speed of expansion to be c = 1 (in an
obvious way, also the conversion between units of space, and time,
on one side, and energy on the other side, is here “by default” set
to one, but it can be called h). We want to see how this is also the
maximal speed for the propagation of information within the classical
space. It is important to stress that all this refers only to the classical
space as we have defined it, because only in this sense we can say
that the universe is three dimensional: the sum 2.1.16 contains in fact
also configurations that, through the time flow, can be interpreted as
“tachyonic”, along with configurations in which it is not even clear
what is the meaning of speed of propagating information in itself, as
there is no recognizable information at all, at least in the sense we
usually intend it. Indeed, when we say we get information about,
say, the motion of a particle, or a photon, we intend to speak of a
non-dispersive wave packet, so that we can say we observe a particle,
or photon, that remains particle, or photon, along its motion 7 (the
existence, in the scenario implied by 2.1.16, of structures of this kind,
namely of wave packets that behave like massive particles, or massless
photons etc., will be investigated in the next chapters). Let’s consider
the simplified case of a universe at time N containing only one such a
wave packet 8, as illustrated in figure 2.1, where it is represented by
the shadowed cells, and the space is reduced to two dimensions.

7Like a particle, also a physical photon, or any other field, is not a pure plane wave
but something localized, therefore a superposition of waves, a wave packet.

8We may think to consider only a portion of the universe, where only such a wave
packet is present.
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N

N

Figure 2.1: The initial position of an energy packet at time N.

N+1
N

N
N+1

Figure 2.2: The energy packet at time N+1, displaced by two cells.
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N+1

N+1
N

N

Figure 2.3: The same energy packet at time N+1, displaced by just
one cell.

Consider now the evolution at the subsequent instant of time, na-
mely after having progressed by a unit of time. Adding one point,
N → N +1, produces an average geometry of a three sphere of radius
N + 1 instead of N . In the average, it is therefore like having added
4πN2 “points”, or unit cells. Remember that we work always with an
infinite number of cells in an unspecified number of dimensions; when
we talk of universe in three dimensions within a region of a certain
radius, we just talk of the dominant geometry. Let’s suppose the po-
sition of the wave packet jumps, back or forth, by two-cells steps, as
illustrated in figure 2.2. Namely, as the time, and consequently also
the radius of the universe, progresses by one unit, the packet moves
at higher speed, jumping by two units. Compare this case with the
case in which the packet jumps by just one unit, as in figure 2.3. The
entropy of this latter configuration, intermediate between the first and
second one, cannot be very different from the one of the second confi-
guration, figure 2.2, in which the packet jumps by two steps, because
that was supposed to be the dominant configuration at timeN+1, and
therefore the one of maximal entropy. Indeed, by “continuity” it must
interpolate between step 2 and the configuration at time N , that was
also supposed to be a configuration of maximal entropy. Therefore,
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the actual appearance of the universe at time N +1 must be somehow
a superposition of the configurations 2 and 3, thereby contradicting
our hypothesis that the wave packet is non-dispersive 9. Therefore,
the wave packet cannot jump by two steps, and we conclude that
the maximal speed allowed is that of expansion of the radius of the
universe itself, namely, c.

It is too early here to discuss the actual existence in this scenario
of degrees of freedom that can be interpreted as photons. In order to
do this we must pass to a representation on the continuum, where, as
we will discuss in the next chapter, it corresponds to a string scenario.
Here we just anticipate that, according to this theoretical framework,
the reason why we have a universal bound on the speed of light is that
light carries what we call classical information. Information about
whatever kind of event tells about a change of average entropy of
the observed system, of the observer, and also what surrounds and
connects them. The rate of transfer/propagation of information is
therefore strictly related to the rate of variation of entropy. Variation
of entropy is what gives the measure of time progress in the universe.
Any carrier of information that “jumps” steps of the evolution of the
universe, going faster than its rate of entropy variation, becomes the-
refore dispersive, loosing information during its propagation. Light
must therefore propagate at most at the rate of expansion of space-
time (i.e. of the universe itself), what is usually called the speed of
light in vacuum.

2.4.2 The Lorentz boost

Let’s now consider physical systems that can be identified as massive
particles, i.e. let us assume that there are local superpositions of
configurations which are interpreted as travelling at speeds always
lower than c. Since the phase space has a multiplicative structure, and

9If it was dispersive, it would be something like a particle that, during its motion,
“dissolves”, and therefore we cannot anymore trace as a particle. It would be
just a “vacuum fluctuation” without true motion, something that does not carry
any information in the classical sense.
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entropy is the logarithm of the volume of occupation in this space, for
each such a system it is possible to separate the entropy into the sum
of an internal, “rest” entropy, and an external, “kinetic” entropy. The
first one refers to the structure of the system in itself, that can be a
particle or an entire laboratory (a point-like particle is an extended
object of which we neglect the geometric structure). The second one
refers to the relation/interaction of this system with the environment,
the external world: its motion, the accelerations and external forces
it experiences, etc.

Let us for a moment abstract from the fact that the actual configu-
ration of the universe implied at any time by 2.1.16 describes a curved
space. In other words, let’s neglect the so called “cosmological term”.
This approximation can make sense at large N , as is the case of the
present-day physics. This means, at large age of the universe 10. Let
us also assume we can just focus our attention on two observers sitting
on two inertial frames, A and A′, moving at relative speed v, neglec-
ting everything else. For what said above, v < 1. An experiment is
the measurement of some event; owing to the fact that happening of
something means changing of entropy and therefore is equivalent to a
time progress, it is perceived as having taken place during a certain
interval of time. Let us consider an experiment, i.e. the detection of
some event, taking place in the co-moving frame of A′, as reported by
both the observer at rest in A, and the one at rest in A′ (from now
on we will indicate with A, and A′, indifferently the frame and the
respective observer as well). Let’s assume we can neglect the space
distance separating the two observers, or suppose there is no distance
between them 11. For what we said above, such a detection amounts
in observing the increase of entropy corresponding to the occurring of
the event, as seen from A, and from A′ itself. Since we are talking

10To make contact with ordinary physics, consider that, once expressed in units
in which the Planck constant and the speed of light are 1, the present age of
the universe is estimated to be of order 1031, and the cosmological constant
of order Λ ∼ 10−61. It is precisely its smallness what historically allowed to
introduce special relativity and Lorentz boosts before addressing the problem of
the cosmological constant.

11In our scenario, huge (=cosmic) distances have effect on the measurement of
masses and couplings.
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of the same event, the overall change of entropy will be the same for
both A and A′. One would think there is an “absolute” time interval,
related to the evolution of the universe corresponding to the change of
entropy due to the event under consideration. However, the story is ra-
ther different as soon as we consider time measurements of this event,
as reported by the two observers, A and A′. The reason is that the
two observers will in general attribute in a different way what amount
of entropy change has to be considered a change of entropy of the
“internal” system, and which amount refers to an “external” change.
Proper time measurements have to do with the internal change of
entropy. For instance, consider the entropy of all the configurations
contributing to form, say, a clock. The part of phase space describing
the uniform motion of this clock will not be taken into account by an
observer moving together with the clock, as it will not even be mea-
surable. This part will however be considered by the other observer.
Therefore, when reporting measurements of time intervals made by
two clocks, one co-moving with A, and one seen by A to be at rest in
A′, owing to a different way of attributing elements within the configu-
rations building up the system, between “internal” and “external”, we
will have in general two different time measurements. Let us indicate
with ΔS the change of entropy as is observed by A. We can write:

ΔS (≡ ΔS(A)) = ΔS(internal = at rest)

+ΔS(external) (2.4.1)

= ΔS(A′) + ΔSKinetic(A) , (2.4.2)

with the identifications ΔS(internal = at rest) ≡ ΔS(A′) and
ΔS(external) ≡ ΔSKinetic(A). In section 2.1.3 we discussed how the
entropy of a 3-sphere is proportional toN2 = E2. This is therefore also
the entropy of the average, classical universe, that in the continuum
limit, via the identification of total energy with time, can be written
as:

S ∝ (cT )2 , (2.4.3)

where T is the age of the universe. This relation matches with the
Hawking’s expression of the entropy of a black hole of radius r = cT
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[24, 25]. It is not necessary to write explicitly the proportionality
constant in (2.4.3), because we are eventually interested only in ratios
of entropies. During the time of an event, Δt, the age of the universe
passes from T to T +Δt, and the variation of entropy, ΔS = S(T +
Δt)− S(T ), is:

ΔS ∝ (cΔt)2 + c2T 2

(
2Δt

T

)
. (2.4.4)

The first term corresponds to the entropy of a “small universe”, the
universe which is “created”, or “opens up” around an observer du-
ring the time of the experiment, and embraces within its horizon the
entire causal region about the event. The second term is a “cos-
mological” term, that couples the local physics to the history of the
universe. The influence of this part of the universe does not manifest
itself through elementary, classical causality relations within the du-
ration of the event, but indirectly, through a (slow) time variation of
physical parameters such as masses and couplings, (the time depen-
dence of masses and couplings will be discussed in chapters 3 and 4).
In the approximation of our abstraction to the rather ideal case of two
inertial frames, we must neglect this part, concentrating the discussion
to the local physics. In this case, each experiment must be considered
as a “universe” in itself. Let’s indicate with Δt the time interval as
reported by A, and with Δt′ the time interval reported by A′. In units
for which c = 1, and omitting the normalization constant common to
all the expressions like 2.4.3 , we can therefore write:

ΔS(A)→ 〈ΔS(A)〉 ≈ (Δt)2 , (2.4.5)

whereas
ΔS(A′)→ 〈ΔS(A′)〉 ≈ (Δt′)2 , (2.4.6)

and
ΔSKinetic(A) = (vΔt)2 . (2.4.7)

These expressions have the following interpretation. As seen from A,
the total increase of entropy corresponds to the black hole-like entropy
of a sphere of radius equivalent to the time duration of the experiment.
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Since v = c = 1 is the maximal “classical” speed of propagation of
information, all the classical information about the system is contained
within the horizon set by the radius cΔt = Δt. However, when A
attempts to refer this time measurement to what A′ could observe, it
knows that A′ perceives itself at rest, and therefore it cannot include
in the computation of entropy also the change in configuration due to
its own motion (here it is essential that we consider inertial systems,
i.e. constant motions). “A” separates therefore its measurement into
two parts, the “internal one”, namely the one involving changes that
occur in the configuration as seen at rest by A′ (a typical example is
for instance a muon decay at rest in A′), and a part accounting for
the changes in the configuration due to the very being A′ in motion
at speed v. If we subtract the internal changes, namely we think of
the system at rest in A′ as at a point without meaningful physics
apart from its motion in space 12, the entire information about the
change of entropy is contained in the “universe” given by the sphere
enclosing the region of its displacement, v2(Δt)2 = ΔSKinetic(A). In
other words, once subtracted the internal physics, the system behaves,
from the point of view of A, as a universe which expands at speed v,
because the only thing that happens is the displacement itself, of a
point otherwise fixed in the local universe (see figure 2.4). Inserting
expressions 2.4.5–2.4.7 in 2.4.2 we obtain:

(Δt)2 =
(Δt′)2

1− v2 , (2.4.8)

that is:

Δt =
Δt′√
1− v2

. (2.4.9)

The time interval as measured by A results to be longer by a factor
(
√
1− v2)−1 than as measured by A′. In this argument the bound on

the speed of information, and therefore of light, enters when we write
the variation of entropy of the “local universe” as ΔS = (cΔt)2. If
c→∞, namely, if within a finite interval of time an infinitely extended

12No internal physics means that we also neglect the contribution to the energy,
and entropy, due to the mass.
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observer

R =   x = v   tΔ Δ

Figure 2.4: During a time Δt, the pure motion “creates” a universe
with an horizon at distance Δx = vΔt from the observer.
As seen from the rest frame, this part of the physical sys-
tem does not exist. The “classical” entropy of this region
is given by the one of its dominant configuration, i.e. it
corresponds to the entropy of a black hole of radius Δx.

causal region opens up around the experiment, both A and A′ turn
out to have access to the full information, and therefore Δt = Δt′.
This means that they observe the same overall variation of entropy.

2.4.2.1 The space boost

In this framework we obtain in quite a natural way the Lorentz time
boost. The reason is that, for us, the time evolution is directly re-
lated to the change of entropy, and we identify configurations (and
geometries) through their entropy. The space length is somehow a
derived quantity, and we expect also the space boost to be a secon-
dary relation. Indeed, it can be easily derived from the time boost,
once lengths and their measurements are properly defined. However,
these quantities are less fundamental, because they are related to the
classical concept of geometry. We could produce here an argument
leading to the space boost. However, this would basically be a copy of
the classical derivation within the framework of special relativity. The
derivation of the time boost through entropy-based arguments opens
instead new perspectives, allowing to better understand where relati-
vity ends and quantum physics starts. Or, to better say, it provides

61



2 A physical universe from the universe of codes

us with an embedding of this problem into a scenario that contains
both these aspects, relativity and quantization, as particular cases, to
be dealt with as useful approximations.

2.4.3 General time coordinate transformation

Lorentz boosts are only a particular case of the general coordinate
transformation, obtained within the context of general relativity; in
that case the measure of time lengths is given by the time-time com-
ponent of the metric tensor. In the absence of mixing with space
boosts, i.e., with a diagonal metric, we have:

(ds)2 = g00(dt)
2 . (2.4.10)

As the metric depends on the matter/energy content through the Ein-
stein’s equations:

Rμν −
1

2
gμνR = 8πGNTμν , (2.4.11)

g00 can be computed when we know the energy of the system. For
instance, in the case of a particle of mass m moving at constant speed
v (inertial motion), the energy, the “external” energy, is the kine-
tic energy 1

2mv
2, and we recover the v2-dependence of the Lorentz

boost 13.

In the simple case of the previous section, we have considered the
physical system of the wave packet as decomposed into a part expe-
riencing an “internal” physics, and a part which corresponds to the
point of view of the center of mass, that is, a part in which the com-
plex internal physics is dealt with as a point-like particle. The Lorentz
boost has been derived as the consequence of a transformation of en-
tropies. Indeed, our coordinate transformation is based on the same
physical grounds as the usual transformation of general relativity, ba-
sed on a metric derived from the energy tensor. Let us consider the

13In the determination of the geometry, what matters here is not the full force
experienced by the particle but the field in which the latter moves. The mass m
therefore drops out from the expressions (see for instance [26]).
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transformation from this point of view: although imprecise, the ap-
proach through the linear approximation helps to understand where
things come from. In the linear approximation, where one keeps only
the first two terms of the expansion of the square-root

√
1− v2/c2,

the Lorentz boost can be obtained from an effective action in which in
the Lagrangian appear the rest and the kinetic energy. These terms
correspond to the two terms on the r.h.s. of equation 2.4.2. Entropy
has in fact the dimension of an energy multiplied by a time 14. Ap-
proximately, we can write:

ΔS � ΔEΔt , (2.4.12)

where ΔE is either the kinetic, or the rest energy. The linear version of
the Lorentz boost is obtained by inserting in (2.4.12) the expressions
ΔErest = m and ΔEkinetic = 1

2mv
2. In this case, the linearization

of entropies lies in the fact that we consider the mass a constant,
instead of being the full energy of the “local universe” contained in a
sphere of radius Δt, i.e. the energy (mass) of a black hole of radius
Δt: m = ΔE = Δt/2. In our theoretical framework, the general
expression of the time coordinate transformation is:

(Δt′)2 = 〈ΔS ′(t)〉 − 〈ΔS ′external(t)〉 . (2.4.13)

Here ΔS ′(t) is the total variation of entropy of the “primed” system
as measured in the “unprimed” system of coordinates: 〈ΔS ′(t)〉 =
(Δt)2. We can therefore write expression 2.4.13 as:

(Δt′)2 = [1− G(t)] (Δt)2 , (2.4.14)

where:

G(t) def
=

ΔS ′external(t)

(Δt)2
. (2.4.15)

With reference to the ordinary metric tensor gμν, we have:

G(t) = 1− g00 . (2.4.16)

14By definition, dS = dE/T , where T is the temperature, and remember that in the
conversion of thermodynamic formulas, the temperature is the inverse of time.
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ΔS ′external(t) is the part of change of entropy of A′ referred to by the
observer A as something that does not belong to the rest frame of A′.
It can be the non accelerated motion of A′, as in the previous example,
or more generally the presence of an external force that produces an
acceleration. Notice that the coordinate transformation 2.4.14 starts
with a constant term, 1: this corresponds to the rest entropy term
expressed in the frame of the observer. For the observer, the new time
metric is always expressed in terms of a deviation from the identity.

By construction, 2.4.15 is the ratio between the metric in the sys-
tem which is observed and the metric in the system of the observer.
From such a coordinate transformation we can pass to the metric of
space-time itself, provided we consider the coordinate transformation
between the metric g′ of a point in space-time, and the metric of an
observer which lies on a flat reference frame, whose metric is expressed
in flat coordinates. We have then:

1 − G(t) =
g
(′)
00

g
(0)
00 = η00 = 1

. (2.4.17)

As soon as this has been clarified, we can drop out the denominator
and we rename the primed metric as the metric tout court.

2.4.4 General relativity

The set {Ψ(T ) }T ≥1 corresponds to the history of a universe consisting
of evolving geometries in the most general sense. We have seen that
this universe embeds the uncertainty principle and, in appropriate li-
mits, special relativity. We may ask whether also general relativity
is accounted for. We cannot expect 2.1.16 to exactly reproduce this
theory, because it contains more. Indeed, we will see that, in order to
investigate the spectrum of its physical content, the best translation
in terms of local fields and interactions is provided by string theory,
when appropriately embedded. Nevertheless, as we did for the ground
principles of quantum mechanics, and the Lorentz boost, we want to
discuss here in what terms general relativity is indeed contained in
this scenario. By construction, it is the distribution of energy what
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determines the geometry. However, we cannot speak of “motion along
geodesics”, as we have rather here an evolution of geometries, ruled by
an entropic principle: at any time the shape of the universe is domi-
nated by the staple of its most entropic configurations. At large time
and when restricted to the most entropic ones, the evolution can be
approximated by a continuous motion through the geometry of an ex-
panding universe. What substitutes the motion along geodesics is here
a stepwise evolution according to the principle of maximising entropy
at any step. This is the closest generalization of the motion along
geodesics: non-minimal distance paths are unfavoured as compared to
minimal distance ones, because they don’t maximise entropy. There-
fore, although present in the sum 2.1.16, they give a suppressed contri-
bution as compared to the minimal distance paths. Let us consider
an example that makes this concretely understandable. Although this
set up at any time accounts for configurations of the entire universe,
let us consider, with a certain amount of abstraction, the non-realistic
case of a “universe” consisting of just two spheres with radius N1 and
N2 respectively, placed in A and B, at a certain distance from each
other, as in figure 2.5. The overall entropy is roughly given by the pro-
duct of the entropies of the single spheres, times a factor depending
on their relative distance: the more the two spheres are far apart from
each other, the lower is the number of possibilities we have to place
this configuration within a certain volume of space, and consequently
the smaller is this factor. Therefore, the system will evolve toward a
configuration in which the two spheres come closer to each other, to
the point they will “fuse” to form a sphere of radius N1+2 = N1 +N2,
with entropy ∼ exp(N1 + N2)

2 > expN2
1 × expN2

2 . This is a sketch
of how gravitational attraction works. Of course, in the real scenario
the geometry is far more complicated and, as we will see, there are
details of the quantum part of the geometry that imply a description
in terms of more degrees of freedom than just the mass (indeed, we
will recover the spectrum of all the fundamental interactions, but, for
the time being, let us neglect these aspects and just think of this sim-
plified system). Let us now compare the two situations of figure 2.5,
where the sphere 2, placed in B, moves toward sphere 1 placed in A,
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t

Figure 2.5: Comparing the motion of sphere 2, placed in B, toward
sphere 1, placed in A, either through C or through C′.
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either along a straight path BCA, or along BC ′A. In the second case,
the path of sphere 2 relative to sphere 1 is not straight, but deviates to
a non-minimal distance curve. Stepwise, at any time step, along the
non-minimal distance path the relative distance of the two spheres is
higher than in the case of minimal distance, and therefore the entropy
of the system lower. This configuration is therefore suppressed in the
entropy-weighted sum. It is nevertheless still present and accounted
for, what precisely makes of this scenario a quantum scenario 15.

So far for what regards the origin of a motion, and its direction. One
should wonder where an accelerated motion comes out. Indeed, the
configuration we just considered is highly simplified and unphysical.
One could ask how is it possible that two spheres, or in general two ob-
jects, can be at rest at a certain distance from each other, i.e. how can
such a configuration be the one favoured by maximisation of entropy.
In fact, one must consider that such a configuration is possible only
if one neglects the environment, for instance a device that just placed
the two spheres and kept them where they are till the instant before we
start our “Gedankenexperiment”. Only if we neglect this, we can just
start with the two spheres as we have depicted them, and explain how
they start moving toward each other, which is the first step of their
motion. After the first step, a kinetic energy has been developed. In
classical terms, it is potential energy that gets transformed into kinetic
energy. In our set up, we just have geometries originating from energy
distributions: in this case, we must consider other energy cells to be
included in the two-spheres system. This modifies the conditions to
new initial conditions for the second step. If we subtract the “kinetic”
effect generated at the first step, i.e. if we consider to start once again
with the spheres at rest, we can repeat the argument and conclude
that once again the system acquires kinetic energy, i.e. motion. This
adds to the one already produced at the first step. At least as long as
the two spheres are far apart from each other so that the effects of the
previous steps can be formally subtracted in a linear way, at any step
we add a constant amount of motion. In practice, re-summing up the

15In section 3.5 we will discuss how the entropy-weighted sum 2.1.16 can be viewed
as a generalization of the Feynman path integral.
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effects cumulated at each step, we obtain an accelerated motion.

The set up corresponding to 2.1.16 corresponds to the Einstein’s
theory only approximately, when one considers the main contribution
to the geometry. Once restricted in this way, the equivalence with ge-
neral relativity is established by the fact that, at large N , the entropic
evolution implies a smooth path of minimal steps, that correspond to
the minimal-distance motions (i.e. along geodesics) of general relati-
vity: any non-minimal gradient introduced in the motion of geometries
corresponds to a smaller symmetry group and therefore smaller en-
tropy, as compared to the smoothest, straightest path. When also less
entropic configurations are taken into account, the scenario described
by 2.1.16 is no more simply a geometric gravitational scenario, but a
quantum scenario. As we will see, it is precisely this feature what im-
plies the introduction of other degrees of freedom besides energy and
mass, and other types of interaction besides the gravitational force.

2.4.5 The metric around a black hole

Let us consider once more the general expression relating the evolution
of a system as is seen by the system itself, indicated with A′, and by
an external observer, A, expressions 2.4.1 and 2.4.2. In the large-
scale, classical limit, the variations of entropy ΔS(A) and ΔS(A′)
can be written in terms of time intervals, as in 2.4.5 and 2.4.6, in
which t and t′ are respectively the time as measured by the observer,
and the proper time of the system A′. As we have seen, in this case
expression 2.4.2 can be written as (Δt′)2 = (Δt)2 − 〈ΔS ′external(t)〉 (see
expression 2.4.13), and the temporal part of the metric is given by:

g00 =
〈ΔS ′external(t)〉

(Δt)2
− 1 . (2.4.18)

As long as we consider systems for which g00 is far from its extremal
value, expression 2.4.18 constitutes a good approximation of the time
component of the metric. However, a black hole does not fall within
the domain of this approximation. According to its very (classical)
definition, the only part we can probe of a black hole is the surface at
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the horizon. In the classical limit the metric at this surface vanishes:
g00 → 0 (an object falling from outside toward the black hole appears
to take an infinite time in order to reach the surface). This means,

〈ΔSexternal〉 ≈ ∝ (Δt)2 . (2.4.19)

However, in our set up time is only an average, “large scale” concept,
and only in the large-scale, classical limit we can write variations of
entropy in terms of progress of a time coordinate as in 2.4.5 and 2.4.6.
The fundamental transformation is the one given in expressions 2.4.1,
2.4.2, and the term g00 has only to be understood in the sense of:

ΔS(A′) −→ 〈ΔS(A′)〉 ≡ Δt′g00Δt
′ . (2.4.20)

The apparent vanishing of the metric 2.4.18 is due to the fact that
we are subtracting contributions from the first term of the r.h.s. of
expression 2.4.2, namely ΔS(A′), and attributing them to the contri-
bution of the environment, the world external to the system of which
we consider the proper time, the second term in the r.h.s. of 2.4.2,
ΔSexternal(A). Any physical system is given by the superposition of
an infinite number of configurations, of which only the most entropic
ones (those with the highest weight in the phase space) build up the
classical physics, while the more remote ones contribute to what we
globally call “quantum effects”. Therefore, taking out classical terms
from the first term, ΔS(A′), the “proper frame” term, means trans-
forming the system the more and more into a “quantum system”. In
particular, this means that the mean value of any observable of the
system will receive the more and more contribution by less localized,
more exotic, configurations, thereby showing an increasing quantum
uncertainty. In particular, the system moves toward configurations
for which Δx →� 1/Δp. Indeed, one never reaches the condition
of vanishing of 2.4.20, because, well before this limit is attained, also
the notion itself of space, and time, and three dimensions, localized
object, geometry, etc..., are lost. The most remote configurations in
general do not describe a universe in a three-dimensional space, and
the “energy” distributions are not even interpretable in terms of or-
dinary observables. At the limit in which we reach the surface of the
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horizon, the black hole will therefore look like a completely delocalized
object.

2.4.6 Natural or real numbers?

The approach we are proposing, and the fact that from the collection
of binary codes we arrive to the structures of our physical world, im-
plies a question about what is, after all, the world we experience. We
are used to order our observations according to phenomena that take
place in what we call space-time. An experiment, or, better, an ob-
servation (through an experiment), any perception in itself, basically
consist in realizing that something has changed: our “eyes” have been
affected by something, that we call “light”, which has changed their
configuration (molecular, atomic configuration). This light may carry
information about changes in our environment, that we refer either
to gravitational phenomena, or to electromagnetic ones, and so on...
In order to explain them we introduce energies, momenta, “forces”,
i.e. interactions, and therefore we speak in terms of masses, couplings
etc... However, all in all, what all these concepts refer to is a change in
the “geometry” of our environment, a change that “propagates” to us,
and eventually results in a change in our brain, the “observer”. But
what is after all geometry, other than a way of saying that, by moving
along a path in space, we will encounter or not some modifications?
Assigning a “geometry” is a way of parametrizing modifications. Is
it possible then to invert the logical ordering from reality to its des-
cription? Namely, can we argue that what we interpret as energy, or
geometry, is simply a code of information? 16 Something happens, i.e.
time passes, when some code changes. Viewed in this way, it is not a
matter of mapping physical degrees of freedom into a language of abs-
tract codes, but the other way around, namely: perhaps the deepest
reality is “information”, that we arrange in terms of geometries, ener-
gies, particles, fields, and interactions. When we “see” the universe,
we interpret the codes in terms of maps, from a space of “energies”

16To this regard, see for instance the “it from bit” of J. A. Wheeler, and the work
of C. F. Weizsäcker.
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to a target space, that take the “shape” of what we observe as the
physical reality. From this point of view, information is not just so-
mething that transmits knowledge about what exists, but is itself the
essence of what exists, and the rationale of the universe is precisely
that it ultimately is the whole of rationale. The quantum (in the sense
of indeterministic) nature of the universe is then the consequence of
being any observable not just a code but a collection, a superposition,
of codes.

Reducing everything to a collection of binary codes means reducing
everything to a discrete description in terms of natural numbers, i.e.
to saying that the whole of rationale is numerable. One may wonder
whether natural numbers are enough to encode all the information
of the universe. At first sight, one would say that real numbers say
“more”, allow to express more information. Moreover, they appear to
be “real” in the true sense of something existing in nature. For ins-
tance, one can think to draw with the pencil a circle and a diameter.
Then, one has physically realized two lines whose lengths don’t stay
in a ratio expressible as a rational number. However here the point
is: what is really about the microscopical nature of these two dra-
wings? At the microscopical level, at the scale of the Planck length,
the notion of space itself is so fuzzy to be practically lost. In our sce-
nario, an analysis of the superposition of configurations tells us that,
before reaching this scale, remote configurations, whose contribution
is usually collected under the Heisenberg’s uncertainty, count more
and more. In other words, the world is no more classical but deeply
quantum mechanical, to the point that the uncertainty in the length
of the two lines doesn’t allow us to know whether their ratio is a real
or a rational number. In this sense, this analysis provides further
support to an old idea which goes back to Konrad Zuse, that all the
information of the universe is expressible through natural numbers,
and, as a consequence, the discrete description of the universe, and in
particular of space-time, is not just an approximation, but indeed the
most fundamental one can think about.

Thinking of the discrete as the ground of a fundamental description
of the world makes sense, because in mathematics real numbers are
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introduced through definitions and procedures, whose informational
content can be “written” as a text with a computer program. As a
matter of pure information content, real numbers are introduced via
natural numbers. In our scenario, the fact of summing over an infinite
number of configurations as a matter of fact somehow reintroduces
in the game the continuum, in a way conceptually reminiscent of the
way real numbers are introduced in mathematics. Owing to these as-
pects, our approach deeply differs from pure “discrete” descriptions of
physics. In our case, although not being fundamental but an effective
approximation, the continuum is not a concept belonging just to the
large scale, but a “built-in” asymptotic limit of the theory.
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the universe of codes

3.1 From combinatorics to strings

As discussed in chapter 2, the dominant geometry of the universe at
energy N is the 3-sphere of radius ∝ N . Here the unit of measure
can be identified with the Planck scale. In the limit of large N , this
scenario can be approximated by a description in terms of interacting
quantum particles and fields. Since we start from a description of
every observable in terms of geometric distribution of energy, these
particles and fields will not simply move inside a space within a well
defined geometry, but will determine themselves the geometry. We will
have therefore a parametrization of the staple of geometries through
propagating fields. In order to have this, we need to associate a fiber
to any point (i.e. to any elementary cell of Planck size) of a base.
According to the analysis of section 2.2, dimensions other than three
are already taken into account by the fact of working with quantum
objects. Therefore, the base of the fiber will correspond to the three
dimensional space. Let us now come to the field content we must
expect to find. We have seen there that the universe behaves like a
black hole with horizon at radius T (where T is the continuum limit of
N), plus “quantum corrections”. The horizon expands at the speed of
light. It is therefore reasonable to think that it is stirred, or driven, by
the propagation of massless fields, such as the photon. To summarise,
we must expect that this scenario can be parametrized in terms of a
theory containing massless fields, and whose space is given as a fiber
over a three-dimensional extended space.

The existence of a minimal length leads to a parametrization in
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terms of extended objects, i.e. to string theory. By this we mean
not just perturbative string theory, but the whole, underlying theory,
which includes not only strings but also more in general membranes.
Owing to the absolute generality of the combinatorial scenario de-
scribed in chapter 2, and assuming uniqueness of string theory (or
M-theory, or whatever name one wants to give to the theory under-
lying perturbative string theory), we make here the hypothesis that
string theory represents it in the continuum. Perturbative construc-
tions of string theory give therefore us insight into the theory in terms
of fields, elementary particles, and their interactions. However, in or-
der for this equivalence to work, also string theory must be endowed
with an entropic mechanism, corresponding to the one at work in the
combinatorial scenario. Namely,

i) the string target space must be considered to be compact (i.e.
all the string coordinates are compactified),

ii) there is no selection mechanism for a specific geometry of com-
pactification, other than a simple stapling of all compactification
geometries, weighted by their entropy. The latter is related to
the amount of symmetry of the “string vacuum” in a way ana-
logous to the relation in the discrete construction of chapter 2.
This implies that string entropy must be defined in relation to
the volume of the symmetry group of the construction.

Of course, the correspondence between the two scenarios is not a one-
to-one correspondence of geometries, because, to start with, as we have
discussed in chapter 2, quantization in itself “covers” a whole bunch
of geometries, something that reflects in the fact that string theory
does not live in an arbitrary number of dimensions. However, we will
see that also on the string theory side the entropic mechanism turns
out to select three space coordinates as the subspace to be identified
with the extended space in which we live.
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3.1.1 The logarithmic map

This string scenario is in its ground non-perturbative and in a regime of
full interaction. In principle, it accounts for the physics of the universe
“pointwise”, parametrizing at any time the evolution of the universe
of 2.1.16. However, in order to “disentangle” the ingredients of this
highly non-perturbative picture, and single them out in terms of ele-
mentary degrees of freedom and their interactions, namely, in order to
obtain the properties (spectrum, masses, interactions) of the elemen-
tary particles as free fields, we must somehow decouple the theory. In
order to make possible the construction of the graviton field, we work
in a flat space, to be viewed as a local approximation of the real space.
This condition leads us to start with supersymmetric string theory in
ten dimensions, to be compactified on a product of circles, and then
progressively singularized. Even after the “internal” space is twisted,
and supersymmetry is broken, even fully broken, there still exists at
least one massless field, to be identified with the graviton. Such a
mapping of the geometric configuration of the universe is precisely
what we need, in order to identify the elementary degrees of freedom.
The transverse coordinates of the flat space must be considered as
the tangent space to the horizon. The massless graviton can then be
viewed as the field that (together with the photon, as we will see), pro-
pagating at the speed of light, which is also the speed of expansion of
the universe, “stirs” the horizon of space, thereby expanding the uni-
verse itself. This interpretation may seem strange, because one would
think of identifying the space and fields of the string theory with the
local space and fields of the physics around the observer. However, as
we will discuss in section 4.1.1.4), there is a duality relating horizon
and center of the universe, intended as the point in which the obser-
ver is located. According to this, the local flat space approximation
turns out to be appropriate also in order to investigate the degrees of
freedom of the local physics around the observer.

Once gravity is decoupled by building the construction on a flat
space, string theory turns out to give us the real world, but as seen
from the tangent space. Instead of telling about the “on shell” physics
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3 The superstring representation of the universe of codes

at any point of space-time, it will give us information on the spectrum
of free fields/particles, whose interaction builds up the actual physical
space geometry. The complete decoupling is attained by compacti-
fying the string on a product of circles (toroidal compactification).
This will be our starting point for the analysis of the sequence of
symmetry reductions leading to less and less entropic string construc-
tions. Indeed, stapling less and less symmetric compactifications im-
plies that, at the end, the resulting effective spectrum will correspond
to the less symmetric configuration of all, given by the intersection of
all the projections. Notice that, as it is defined, the effective physical
spectrum must not necessarily coincide with the spectrum of any of
the single string compactifications 1. The details of this analysis, and
the spectrum resulting from symmetry minimisation, will be discus-
sed in chapter 4. Here we discuss general properties which allow us
to correctly identify the relation between the coordinates appearing
in the perturbative string construction we will use for our investiga-
tion, and the real, physical space-time coordinates. In the toroidal
compactification one can eliminate the time and one space coordinate
of the target-space, and work in the light-cone-gauge, which describes
only the transverse propagating modes of massless fields. The relation
between the representation of space coordinates in the toroidal string
compactification to the coordinates of the physical, curved space-time
is precisely the one we expect when passing from a description in terms
of groups to a description in terms of the associated algebras, i.e., lo-
garithmic. The spheric space-time is here mapped into a two torus.
In chapter 2 the entropy of the 3-sphere has been found to be:

S(3) ∼ N2 , (3.1.1)

whereas the entropy of the circle has been found to have a logarithmic
dependence on N :

S(1) ∼ lnN . (3.1.2)

1In this scenario it is not a matter of looking for the “right” string compactification,
the one which should produce the physical spectrum of elementary particles and
fields as we know it, no more than it is a matter of building a single geometry
which exactly reproduces the shape of the physical world. All the observables
are here defined as mean values, averaged over an infinite staple of geometries.

76



3.1 From combinatorics to strings

Passing from the physical, curved space, to a picture based on a toroi-
dal compactification implies therefore a logarithmic transformation of
entropy, and therefore of the coordinate N . The mapping of entropy
is:

S : N2 → 2 lnN , (3.1.3)

implying the coordinate transformation N → lnN , or, in the conti-
nuum limit, T → lnT . We see that indeed the string construction
turns out to be a realization in a logarithmic representation of the
real, physical coordinates. We introduce therefore here the concept of
logarithmic picture, defined as a representation of the physical world
through a staple of string configurations. It corresponds to an effective
theory, in which masses and couplings are computed as mean values
on a staple of string compactifications, and are related to the physical
quantities by a logarithmic map: the physical quantities are obtained
by exponentiation of the relations obtained as functions of the string
coordinates in the logarithmic picture. For instance, a mass relation
of the type m ∼ α/r+κ as obtained in the logarithmic picture corres-
ponds to a physical mass of the type m ∼ κR−α, where r, the space
coordinate in the logarithmic picture, is related to the physical space
coordinate R through r = lnR (as we will also do on page 85, we use
here Fraktur fonts for quantities in the logarithmic picture, in order
to distinguish them from their physical counterparts).

It is well known that a consistent string theory can only be construc-
ted by embedding the string in a higher dimensional target space. The
number of these dimensions is fixed by the requirements of supersym-
metry (basically needed in order to introduce fermions, i.e. in order
to implement a relativistic description of space-time) and quantum
consistency, and are apparently not related to the dimension (three)
of the space we want eventually describe. However, as seen from our
point of view, these two things are deeply related: superstring theory
is consistent precisely in the right number of dimensions that make of
it the theory which implements a description of the universe we are
discussing. In our approach, the number of space dimensions of the
universe, three, turns out to correspond to the minimal number of non-
twisted dimensions string theory can be consistently reduced to upon
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compactification, once canonical quantization is imposed. They cor-
respond therefore to the only coordinates along which massless fields
are free to expand, after the highest degree of projection and sin-
gularization of the string space has been applied. The procedure of
singularization of the string target space will be investigated in chap-
ter 4. Here we want to see how the initial ingredients of string theory
are precisely those required in order to pop out this result. To this
regard, we must first consider that the uncertainty principle, as deri-
ved within the theoretical framework of the discrete scenario, implies,
and is implied by, only one dimensionality of space, with a well de-
fined geometry. In the combinatorial construction of chapter 2 we
have seen that we obtain a ”classical” d = 3 dimensional space, plus
the Heisenberg’s uncertainty. The dimensionality of space becomes
d = 3 + 1 once we implement the ”time” T = Etot in a time co-
ordinate suitable for a field theory description. On the other hand,
had the dominant dimensionality of space been different from three,
in the sum of the rests considered in order to derive the uncertainty
(section 2.2) the ratio between weight of the classical and weights of
quantum configurations would be different, leading to a different ex-
pression of the uncertainty. Moreover, the Heisenberg’s uncertainty
not only is uniquely related to the dimensionality, but also to the
geometry of space, because geometries different from the sphere have
different entropy, and therefore different weight, leading to a different
uncertainty. Therefore, from the point of view of the scenario of 2.1.16,
the Heisenberg’s uncertainty not only determines dimension and main
geometry, but also the spectrum of the theory. Considering now the
realization of this scenario on the continuum, let us see how many
internal dimensions do we need. We want to describe all the possible
perturbations of the geometry of a sphere in three dimensions, as due
to fields and particles that propagate in it. Notice that it is not a
matter of building up a set of fields framed in a certain space, i.e.
functions of space-time coordinates: it is a matter of promoting the
deformations of the geometry themselves to the role of fields. One may
think of a description in terms of vector fields. Once provided with a
time coordinate, the set (3-sphere × time coordinate), which can be
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considered the d = 3 + 1 “background” space, corresponds to vector
fields possessing an SO(3, 1) symmetry. However, we must have both
bosons and fermions. Fermions are needed because we want a quan-
tum relativistic description of fields. It is relativity what leads to the
introduction of spinorial representations of space. This does not mean
we need bosons and fermions in equal number, nor even that they
must have the same mass (implying supersymmetry of the theory):
supersymmetry is not a symmetry (in the sense of an exact symme-
try) of the real world. In terms of spinorial representations, SO(3, 1)
is locally isomorphic to SU(2)×SU(2), a group with 3+3 generators,
which, once parametrized in terms of bosonic fields, correspond to a
space with six bosonic coordinates. One would like to conclude that,
in order to have both a vectorial and a spinorial representation of the
background space with all its perturbations we need therefore the ori-
ginal 3+1 coordinates plus 3+3 internal coordinates. With six internal
dimensions it seems we are sure that whatever internal configuration
can be mapped to a configuration of space-time, allowing for a non-
trivial (and complete) mapping between the ”fiber” and the ”base”
space, ensuring thereby a non-degenerate and complete description of
all the perturbations. Ten is precisely the dimension of any pertur-
bative quantum superstring. There is however one more coordinate,
obtained by the “un-freezing” of the gravitational coupling, the unit
scale, which is indeed the coupling of the theory. Perturbatively, this
coupling is flattened into a coordinate (it appears explicitly as such in
the 11-dimensional supergravity) 2.

Although the critical dimension of superstring theory is obtained
through self-consistency considerations that apparently have little to
do with our requirements, it is remarkable that the two dimensiona-
lities turn out to correspond. This provides strong support to the
idea that string theory is the right candidate for the translation of

2If one wants to retain part of the non-perturbative string description, i.e. with
a non-trivial Planck length, he is forced to keep a non-trivial part of the cou-
pling even in a perturbative construction. This may lead to some artifacts, that
produce the impression, when looking at just a subset of the construction, that
the fundamental theory lives in twelve dimensions (see for instance the works on
F-theory, first proposed in [27]).
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this scenario. The tight relation we have found between Heisenberg’s
uncertainty and dimensionality of space, together with the absolute
generality of the scenario described by 2.1.16, namely the fact that
it considers the collection of all possible geometries, seems to imply
therefore also the universality of its translation into the continuum in
terms of string theory, providing further support to the idea of the
existence of a unique string theory underlying all the possible pertur-
bative constructions.

3.1.2 Entropy in the string phase space

On the string space, 2.1.16 can be translated into:

ZT =

∫
T
Dψ eS(ψ) , (3.1.4)

where ψ indicates now a whole, non-perturbative string construction,
and T is the time parameter. We recall that, in order to reproduce
the discrete scenario, the volume of the string target space has always
to be considered finite. The time coordinate too must be considered
as being compactified. The sum 3.1.4 is therefore performed over all
the string compactifications on a space with the time coordinate of
size T . Entropy is defined as usual: as the logarithm of the volume of
the symmetry group. An absolute evaluation is not necessary, because
the only thing which in practice matters is the relative weight. Since
all string compactifications can be viewed as obtained from the to-
roidal one by acting with projections/symmetry reductions, a relative
evaluation is all what is needed, something that leaves undetermined
an irrelevant additive constant in the exponent of the integrand, or,
otherwise, an overall normalization factor in 3.1.4.

Starting from the most symmetric compactification, perturbatively
realized on a product of tori, and proceeding through a chain of sym-
metry reductions via projection and twisting, we obtain the most sin-
gular compactification as the one in which the initial symmetry is redu-
ced to the minimal possible one. It turns out that in this construction
all the coordinates of the string target space are twisted, except, in
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the light cone gauge, for two transverse, corresponding to the “front”
of an expanding universe with three space dimensions (see chapter 4).
Indeed, as the world described by 2.1.16, and correspondingly by 3.1.4,
is given by the stapling of different geometries, also the effective phy-
sical description, e.g. the spectrum of elementary particles and their
interactions, will be produced by a staple of string configurations, in
this case close to the minimum of entropy. Measuring, through an ex-
periment, certain properties of fundamental physics, involves in fact
a selection, or projection, in any case an operation of filtering to a
particular range of energy scales, sizes, etc... For instance, being in-
terested in the interaction of the electron implies that experimentally
one neglects large scale gravitational phenomena such as, to start with,
the gravitational field on the earth, or, even more, the cosmological
constant. Translated in our scenario, this means that looking for the
physics of elementary particles implies neglecting the most entropic
configurations, which are the ones that most contribute to the ground
curvature of the geometry of the universe.

3.1.3 Pulling-back to the physical picture: the scaling of energy

Consider the typical expression of a mass, or an energy, as computed
in a string orbifold:

E = logμ + (constants and terms depending on the internal space) , (3.1.5)

where μ is a scale introduced in order to regularize the computation,
and corresponds to the size of a compactified space-time. Compare
this expression with the mapping of a typical momentum from the
physical space to the logarithmic picture:

E0 =
k

T
log−→ log T + log k . (3.1.6)

One recognises the first term of the expression in the logarithmic pic-
ture, log T , as the equivalent of the logμ term of 3.1.5, while log k
corresponds to the contribution of the internal space. The latter may
depend on moduli, or, whenever the entire internal space is twisted,
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be a constant. Our previous observations about the re-interpretation
of string coordinates in the perturbative string construction as loga-
rithms of the physical coordinates reveal here their importance. What
we learn from this comparison is that a quantity of order one in a per-
turbative string construction does not correspond to a physical quan-
tity of order one (i.e. of order of the Planck scale): as one can see
from 3.1.6, once pulled-back to the physical picture, additive constant
terms become multiplicative factors, whereas the physical quantity ac-
quires a dependence on the scale of space-time (∼ 1/T ) typical of a
density. Consider now the energy density of the universe, and the cos-
mological constant, in a string construction in which the internal space
is completely twisted, and supersymmetry is broken. A string com-
putation would give an energy whose dominant behaviour is constant,
of the order to the size of the internal space. In a duality-invariant
frame, this can be considered of Planck scale size. As a consequence,
supersymmetry seems to be broken at the Planck scale, and also the
vacuum energy, i.e. the cosmological term, seems to be of the order
to the Planck scale. However, for what we have just learned, constant
terms are pulled-back to multiplicative factors, that will become den-
sities, acquiring a dependence on the size of the extended space. The
energy one computes in a string construction must therefore not be
considered a density, but a global value. This represents a deep change
of point of view toward the way of approaching string computations.
Let us see in detail the transformation from string quantities to the
corresponding physical quantities, in order to correctly evaluate the
dependence on the physical space coordinates they acquire, and cor-
rectly fix the normalization of the transformation 3.1.6. Since in our
scenario string theory is defined on a compact space, the vertex opera-
tors are not to be normalized by the volume of space, i.e. the volume
of the group of translations in the four-dimensional space time. There
is in fact no more symmetry under translations, and therefore no over-
counting along the orbit of this group, a displacement in space or time
representing now an evolution of the universe to a different age. As
a consequence, one does not compute anymore densities but global
quantities that, in order to be correctly inserted in an effective action,
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must be divided by an appropriate volume factor of the space-time.
A quantity of order one, such as the vacuum energy in the case of su-
persymmetry broken at the Planck scale, must then be divided by the
volume of the base, acquiring a factor 1/T 2, the right factor to give
the correct size of the cosmological term, as well as the energy density,
at present time 3. Considering string theory as defined on a compact
space, and viewing infinitely extended space only as a limiting case of
a compact space, entails therefore a deep change of perspective, full
of consequences for the interpretation of things that we compute in
string theory.

3The reason why in the traditional approach string computations produce densities,
to be compared with the integrand appearing in the effective action, lies in
the fact that space-time is assumed to be infinitely extended. In an infinitely
extended space-time, there is a “gauge” freedom corresponding to the invariance
under space-time translations. In any calculation there is therefore a redundancy,
related to the fact that any quantity computed at the point �x is the same as at
the point �x+�a. In order to get rid of the over-counting due to this symmetry, one
normalizes the computations by “fixing the gauge”, i.e. dividing by the volume
of the orbit of this symmetry ≡ the volume of the space-time itself. Actually,
since it is not possible to perform computations with a strictly infinite space-
time, multiplying and dividing by infinity being a meaningless operation, the
result is normally obtained through a procedure of regularization of the infinity:
one works with a space-time of volume V , supposed to be very big but anyway
finite, and then takes the limit V → ∞. In this kind of regularization, the
volume of the space of translations is assumed to be V , and it is precisely the
fact of dividing by V what at the end tells us that we have computed a density.
In any such computation this normalization is implicitly assumed. In our case
however, there is never invariance under translations: a translation of a point
�x → �x + �a is not a symmetry, being the boundary of space fixed. On the
other hand, a translation of the boundary is an expansion of the volume and
corresponds to an evolution of the universe, it is not a symmetry of the present-
day effective theory. In our framework, the volume of the group of translations
is not V . Simply, this symmetry does not exist at all. There is therefore no
over-counting, and what we compute is not a density, but a global value. In our
case, compactification of space to a finite volume is not a computational trick
as in ordinary regularization of amplitudes, it is a physical condition. In our
interpretation of string coordinates, there is therefore no “good” limit V → ∞,
if for “∞” one intends the ordinary situation in which there is invariance under
translations. In our case, this symmetry appears only strictly at that limit, a
point which falls out of the domain of our theory.
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3.2 Masses

In the discrete scenario encoded in 2.1.16, massive particles are energy
clusters that propagate at a speed lower than the one of expansion of
the universe itself, and can therefore be “localized”. Like the spec-
trum, also masses must be explored in the representation in which
fields and elementary particles show up, namely, in the string repre-
sentation. There, masses appear as the lowest momentum of a given
particle, and are related to the scale of the universe, which, we recall
it, at any time corresponds to a space-time of finite extension. Mas-
sive particles and fields correspond to modes that are charged under
symmetries of the internal string space. They therefore do not feel
just the geometry of the extended, three-dimensional space, but of a
higher dimensional space in which some radii are of very small (i.e.
string) size 4. Typical radii are therefore shorter, and, as a conse-
quence, ground momenta higher than just the inverse of the radius of
space-time. A varied spectrum of masses is produced by the fact that
different particles arise from a staple of string compactifications which
have a different amount of projection. They therefore have different
symmetry, and also different weight in the phase space. Like energies,
in our scenario masses are expected to stay in ratios corresponding to
ratios of volumes of symmetry groups, accounting for the weight of
the massive state in the phase space:

mi

mj
=
||Gi||
||Gj||

, (3.2.1)

where Gi, Gj indicate the full, non-perturbative symmetry group,
whose volume depends on the internal symmetry and on the size of
space-time. In the case of the elementary particles, these ratios can
be analyzed with a good approximation, once we know the staple of
string compactifications that mostly contribute to the spectrum of the
theory. In the logarithmic picture we obtain mass differences of the

4The string length is in principle different from the Planck length. However, in
the following and along all this book we will always think in terms of a string-
duality invariant reference frame, where the fundamental length coincides with
the Planck length.
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type:

mi −mj = βj log T − βi log T , (3.2.2)

where βi, βj correspond to the volumes of the T -independent part of
the algebra of the respective symmetry group, and depend only on
the properties of the internal string space. In passing to the physical
representation, these relations are exponentiated to ratios of the type:

mi

mj
=
T βj
T βi . (3.2.3)

As one can see, heavier masses are not the same as higher momentum
excitations. Higher momenta are multiples of a fundamental one, like
the higher frequency modes of a string. Different particle masses run
instead as different powers of the age of the universe.

3.3 Interactions, and couplings

A transition from a particle of higher mass to a (set of) lower mass
particles, that is, a decay, always entails a gap of energy, which goes
into kinetic energy. This is precisely what, according to our scenario,
makes such a transition physically favoured as compared to its non-
occurring: it produces a higher spread of energy along space, thereby
increasing the symmetry of the geometry, and therefore the overall
entropy of the universe. The “coupling” of the interaction depends
therefore on the amount of momentum/energy space which is made
free by the transition. We define here in all generality the couplings
as ratios of weights, i.e. of volumes of symmetry groups. When the
symmetry is broken, they can be translated into ratios of masses.

Due to its being the superposition of all possible compactifications,
in the universe all symmetries are broken, and this reflects also in
the fact that there are no elementary states with the same mass. As
we will see, what survives the breaking is the U(1) (gauge) symme-
try corresponding to the photon. From a technical point of view, its
survival is related to the basic representation of matter as complex
fields, a structure explicitly preserved in any superstring construction.
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From a physical point of view, the latter are precisely tuned in a way
to preserve the spinorial character of the fundamental description of
space-time, as required by the combination of quantum mechanics and
relativity.

3.4 The strong force

The couplings we have just defined correspond to the weak interac-
tion of the theory, for which an investigation in the perturbative, flat
limit constitutes a reasonable approximation. Reintroducing gravi-
tation, and therefore the curvature of space, leads necessarily to the
strong coupling of the theory, and to a partial restoration of S-duality.
We have seen that particles have masses scaling as different powers
of the inverse of the size of space-time. Depending on their inter-
action, they feel therefore a larger or smaller portion of the “inter-
nal” string space. In principle, these masses should correspond to
momenta of appropriate subspaces of the whole space. However, we
have no recipe for investigating the masses of the modes of the full,
non-perturbative, interacting theory. There is however one exception:
a compound of particles completely neutral for all the interactions,
apart obviously from the gravitational one, should have a classical, or
ground, mass corresponding to the inverse of the average radius of the
non-perturbative string space. By this we mean the space built up by
the staple of geometries, not just the target space of a single string
construction, and therefore expressing the result of all the physical
interactions and field/matter content. We do not know what is preci-
sely the average geometry resulting from the entropy-weighted staple
of non-perturbative string constructions at any time, but we know that
it must be some kind of ten dimensional ellipsoid, with three coordi-
nates extended as much as T , the age/radius of the classical universe,
and seven internal dimensions of size of order one. If we let a line
intersect the ellipsoid by passing through the origin, for any angle of
orientation we get a segment, whose length corresponds to the inverse
lowest momentum of possible particles, either elementary or not. If
we label these momenta with the values of the angle of the intersec-
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ting line at the origin, we see that interactions, by gluing together or
separating, creating or eating particles, transform angles into other
angles. A neutral state is by definition insensitive to interactions, and
therefore to variations of the angle. In practice, it feels the space as
if it were a symmetric space, a ten dimensional sphere with the same
volume (and therefore energy) as the ellipsoid. Its radius is:

R̂ ∝ 10

√√√√(
10∏
i

Ri = T 3 × 17

)
= T 3/10 , (3.4.1)

and the corresponding mass:

< m > =
1

2

(
1

T

)3/10

. (3.4.2)

This is the mass scale of stable matter, neutral for all the interactions
(it is the mass of a hypothetical particle our universe would be made
of, had it only gravitational interactions). It corresponds to the typical
momentum of a 10-sphere, the most symmetric, and therefore most
entropic, geometry with seven internal coordinates of radius 1 and
three extended up to radius T . In a temporal average, namely, when
events are integrated over time, it results to be the dominant configu-
ration. Since any experiment is performed during an extended time
interval, we expect this mass scale to play a fundamental role when
comparing with the experimental measurements all the mass evalua-
tions regarding unstable states, i.e. states that exist only for a short
interval of time, shorter than the duration of the experimental mea-
surement (see section 4.3.6). As discussed in section 4.3.2.5, it corres-
ponds to the mass of the system {[neutron, proton, electron, neutrino]∪
[their conjugates]}, therefore approximately four times the neutron
mass mn. This leads to the relation:

mn =
1

8
T −3/10 , (3.4.3)

which can be used in order to derive the precise value of the age of the
universe to be inserted in the expression of all the other masses and
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couplings. The neutron mass turns out to be higher than the mass of
the bare quarks of lowest mass. This means that the only process of
weak decay alone leads to stable matter of weight too low to ensure
the existence of a geometric scenario, implying that there must be
another type of force at work, stronger than the gravitational one,
which counterbalances the electro-weak one. It is the geometry, based
on the Planck scale, what requires the existence of both the weak and
the strong interaction! At the string level, this is realized through the
existence of T-duality. Through this, string theory implements the
existence of a minimal length, ensuring thereby that the string is an
extended object. Since in the string realization the coupling of the
theory too is a coordinate, T-duality results in a so-called S-duality,
namely the strong-weak duality.

Much like T-duality, also S-duality is eventually broken. Neverthe-
less, it does not completely disappear: simply, strongly and weakly
coupled sectors are not perfectly symmetrical to each other. A conse-
quence of T- or S-duality is also that there is no perturbative string
realization in which all the states and their interactions are visible.
The string compactified on circles, as is our case, has momenta and
windings, and one cannot wash out the ones or the others: any pertur-
bative realization is based on a choice of limiting procedure, in which
one decides which ones have to appear and which of the two (mo-
menta or windings) must be truncated out. In infinite space-time one
could think to take a freely-acting orbifold and keep just the ones or
the other, thereby realizing perturbatively the full theory. But in this
scenario, space is compact, and there is always a part of the theory
which is simply “hidden”.
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3.5 A string path integral

Any string compactification ψ contributing to 3.1.4 describes in itself a
“universe” which, along the set of values of T , undergoes a pressureless
expansion. In this case, the first law of thermodynamics:

dQ = dU + PdV , (3.5.1)

specializes to:
dQ = dU . (3.5.2)

Plugged into the second law:

dS =
dQ

T
, (3.5.3)

it gives:

dS =
dU

T
. (3.5.4)

Here T is the temperature of the universe, defined as the ratio of
its entropy to its energy. In its dominant configuration, the uni-
verse behaves, from a classical point of view, as an expanding, three-
dimensional Schwarzschild black hole, and the temperature is propor-
tional to the inverse of its total energy, or equivalently, its radius:
T = �c3/8πGMk, where k is the Boltzmann constant and M the
mass of the universe, proportional to its age according to 2GM = T .
By substituting entropy with energy and temperature in 3.1.4 accor-
ding to 3.5.4, we obtain:

Z ≡
∫
Dψ e

∫
dU
T , (3.5.5)

where U ≡ U(ψ(T )). If we write the energy in terms of the integral
of a space density, and perform a Wick rotation from the real tempe-
rature axis to the imaginary one, in order to properly embed the time
coordinate in the space-time metric, we obtain:

Z ≡
∫
Dψ ei

∫
d4xE(x) . (3.5.6)
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Let’s now define:

S ≡
∫
d4xE(x) . (3.5.7)

Although it doesn’t exactly look like, S is indeed the Lagrangian action
in the usual sense. The density E(x) is here a pure kinetic energy
term: E(x) ≡ Ek. In the definition of the action, we would like to see
subtracted a potential term: E(x) = Ek − V . However, the V term
that normally appears in the usual definition of the action, in this
framework is a purely effective term, that accounts for the boundary
contribution. Let’s better explain this point. Usually, in a quantum
action in the Lagrangian formulation, one has an integrand of the
type:

L = Ek − V , (3.5.8)

where Ek, the kinetic term, accounts for the propagation of the (mass-
less) fields, and for their interactions. Were the fields to remain mass-
less, this would be all the story. The reason why we usually need
to introduce a potential, the V term, is that we want to account for
masses and the vacuum energy (in other words, the Higgs potential,
and the (super)gravity potential). In our scenario, non-vanishing va-
cuum energy and non-vanishing masses are not produced, as in quan-
tum field theory, through a Higgs mechanism, but arise as momenta
of a space of finite extension, acted on by a shift that lifts the zero
mode (see chapter 4). When we minimise 3.5.7 through a variation of
fields in a finite space-time volume, we get a non-vanishing boundary
term due to the non-vanishing of the fields at the horizon of space-
time (moreover, we obtain also that energy is not conserved). In a
framework in which space-time is considered of infinite extension, as
in the traditional field theory, one mimics this term by introducing a
potential term V , which has to be introduced and adjusted “ad hoc”,
with parameters whose origin remains obscure 5.

The passage from the entropy sum over string compactifications to
the path integral is not just a matter of mathematical trickery. It

5Here we have another way to see why the cosmological constant, accounting for
the “vacuum energy” of the universe, as well as the other two contributions to
the energy of the universe, correspond to densities ρΛ, ρm, ρr, have present values
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involves first of all the reinterpretation of amplitudes as probability
amplitudes. This is on the other hand implemented in the string
construction, where quantization is introduced in canonical way. But,
besides this, there is something that may look odd at first sight. In the
usual quantum (field) theoretical approach, mean values as computed
from the Feynman path integral are in general complex numbers, as
implied by the rotation on the complex plane leading to a Minkowskian
time, 1/T → it. Real (probability) amplitudes are obtained by taking
the modulus square. This means that what we obtain from 3.1.4, 3.5.6
is somehow the square of the traditional path integral. This is related
to the fact that, in order to build up a representation of the fine details
of the shape of space, as implied by the staple of energy distributions,
we resort to a spinorial representation of space-time. Roughly spea-
king, spinors are “square roots” of vectors. Indeed, as we will see
in chapter 4, masses are here originated by a Z2 orbifold shift of the
string space. This shift gives rise to massive particles by pairing left
and right moving spinor modes (spinor mass terms in four dimensions
are of the type mψψ̄). The Z2 orbifold projection halves the phase
space by coupling two parts, and raises the ground momentum. In
terms of the weight in the entropy sum, we have at the exponent a
pairing/projection (S(ψ) + S(ψ))/Z2, what makes clear that the am-
plitudes of 3.1.4 are squares of those of the elementary fields (with
“weight” expS). Had we just a vectorial (bosonic) representation of

of the order of the inverse square of the age of the universe T :

ρ ∼ 1

T 2
. (3.5.9)

Were these “true” bulk densities, they should scale as the inverse of the space
volume, ∼ 1/T 3. They instead scale not as volume densities but as surface
densities: they are boundary terms, and as such they live on a hypersurface of
dimension d = dim[space-time] − 1. The Higgs mechanism of field theory itself
can here be considered a way of effectively parametrizing the contribution of the
boundary to the effective action in a compact space-time. The Higgs mechanism,
needed in ordinary field theory on an extended space-time in order to cure the
breaking of gauge invariance introduced by mass terms, is somehow the pull-back
to the bulk, in terms of a density, i.e. a “field” depending on the point �x, of a
term which, once integrated, should reproduce the global term produced by the
existence of a boundary.
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3 The superstring representation of the universe of codes

space, this would not occur, because vectorial (spin 1) or scalar (spin
0) mass terms are of the type m2A2, m2ϕ2. That is, a mass pairs with
one boson.

3.6 Resonances

Resonances are a well known effect occurring in physical systems, both
at the macroscopic level, for instance in case of momentum transfer
between scattering billiard balls, vibrating strings etc..., and at the
microscopic level. Of this type are in fact also the absorption of ra-
diation by an atom, or a peak of cross section in the scattering of
particles, when a threshold of production of a real particle in the
otherwise virtual intermediate channels is attained. In particular, this
last phenomenon is used as signal of the existence of particles/fields
in high-energy accelerators. Common to all these phenomena is the
energy transfer from a system to another one, when the amount of
energy corresponds to a typical emission/absorption band. For what
concerns the opening of real channels, the effect is formally parame-
trized by the (denominator of the) field theory propagator, of the type
∼ 1/(p2 −m2) where m is the mass of the transferred particle or bo-
son, which has a singularity at p2 = m2, leading to a sudden increase
of the (integrated over the momenta and mediated) amplitude. The
propagator, on the other hand, shows up as the inverse of the kinetic
term of the Lagrangian. In fact, it is already contained in the prin-
ciple of minimal action, corresponding to the vanishing of the term
T − V , which translates here into (Kinetic Energy) − (Rest Energy),
and as such can also be seen to directly derive from the field theoreti-
cal version of the Feynman path integral. This phenomenon appears
therefore to be correctly implemented in the theory, and not simply
“introduced ad hoc”. However, besides the rather refined technical
definitions and implementations, the problem of a deeper understan-
ding of resonance is simply translated in understanding why should
the evolution of a system be driven by an action principle. In our fra-
mework, the entire dynamics is of entropic type, and phenomena do
occur simply because they dominate from a simple combinatorial point
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of view the phase space of all the possible configurations. Entropic are
not only all forces, but, as we have discussed, the very existence of a
three dimensional universe, and its quantum and relativistic nature.

In our theoretical framework, a resonance occurs whenever the ini-
tial energy equals the energy of a state of the theory, and therefore it
corresponds to an enhancement in the phase space. In the space of
the configurations of energy distributions there is no distinction bet-
ween “types” of energy: there is only a staple of ways of assigning a
certain amount of energy with a certain space distribution. Locali-
zing an amount of energy corresponding to the mass of a particle is
absolutely equivalent to producing a particle with the same degree of
localization, for the simple reason that the concepts of particle or wave
or whatever else belong more to our way of organizing the description
of physical phenomena than to the intrinsic essence of physical phe-
nomena in themselves. In this sense, also processes of energy emission
and/or absorption in atomic systems are types of resonances, and the
smearing of the peak (for instance of absorption) has basically the
same origin as the quantum nature of physics itself, namely the fact
of being the universe a superposition of geometries. In section 3.5 we
have discussed how working with a space-time of finite extension effec-
tively introduces a boundary term that mimics the existence of a rest
energy E0. One can see that E0 has precisely the right sign to produce
in the effective action a kinetic term of type E − E0: an effective ac-
tion on a compact, truncated space with energy term E is equivalent
to an effective action with a lower energy term, E − E0, integrated
over the full, infinitely-extended space. Therefore, the entropic ap-
proach correctly reproduces the usual kinetic-minus-rest energy term
of the effective action that, once inverted, gives the singular term of
the propagator, leading to resonance.

An example is the case of the emission of radiation from transitions
between atomic energy levels, which has an exponential width, usually
formalized in the assumption that a physical photon is a wave-packet
of solitonic type, therefore a function of hyperbolic sinus type, i.e. with
a Gaussian dependence on the energy spread. In our framework, the
Gaussian suppression out of the resonance peak is due to the fact that,
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3 The superstring representation of the universe of codes

being the portion of the universe corresponding to the experiment is a
kind of small universe in itself, with total energy E ∼ N , the geome-
tries corresponding to a different total energy n < N are suppressed
by a factor en

2−N2

, as if they did correspond to a universe of lower age
n ∼ T ′ < T ∼ N (see the discussion in chapter 2 about the weight of
configurations at previous age/lower energy). The Gaussian shape is
therefore a consequence of the exponential dependence of the weights
on the square of energy 6.

3.6.1 Strong electromagnetic coupling resonances

A fundamental, and key difference, between the scenario we obtain
in this theoretical framework, and the traditional approach to quan-
tum field and string theory, is that here, owing to the compactness of
space-time, and also of the internal string space, T-duality, and the-
refore also S-duality, are not completely washed out from the effective
physical world resulting from the staple of all the string compactifica-
tions. Had we not decoupled the theory, and therefore factored-out the
extended space, the geometry of space-time resulting from the staple
of string compactifications would automatically account for the pre-
sence in certain regions of space-time of physical aspects due to both
the dual phases. It is just due to technical reasons that we can only
obtain a hierarchy of decoupled constructions with different symmetry,
and therefore entropy, giving the impression that S-dual contributions
are always suppressed. But this is not the case of the real, physi-
cal, interacting theory. When we look at certain specific experimental
conditions (e.g. the scattering of a certain type of particles, occurring
at a certain center-of-mass energy, etc...) implicitly we have perfor-
med a very specific selection of the subspace of the phase-space, in

6From this perspective, one could view the inverse-square-power behaviour of the
propagator, 1/(p2 −m2) = 1/x2, itself as the approximation of an exponential
(Gaussian) behaviour:

e−x
2

∼ 1 +
1

x2
+ . . . , (3.6.1)

and consider thereby ordinary field theory propagation as an approximation of
the dynamics of this, more general, scenario.
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which S-duality may give detectable contributions.

An example of this situation is provided by certain resonances of
the amplitude in the proton-antiproton scattering performed at LHC,
that ones tries to explain according to quantum field theory as due to
the production of an intermediate Higgs boson (see section 4.5.2 for
a discussion and references). This explanation is however for certain
aspects controversial, because the signature of these scatterings does
not exactly fit with what one would expect from a Higgs production.
Interpreting the results as signals of a Higgs boson requires an amount
of “model fitting” and adjustments, which otherwise appear as unne-
cessary within our theoretical approach, where these resonances are
explained in a completely different way. Indeed, they are not only
justified, but accounted for and predicted, both at the qualitative and
quantitative level (see section 4.5.2).

In order to get a rough idea of what is going on, let us consider
the electric force between two charged particles of elementary integer
charge e. Classically, the electromagnetic energy of the two-particle
system is:

EV ∼
e2

R2
∼ α

R2
, (3.6.2)

where for simplicity we have neglected all numerical factors and fun-
damental constants (which can be considered to be set to one). Let us
suppose we form a bound state by letting the distance R go “to zero”,
that is, in our physical framework, to the Planck length: R→ 1. For
such a state the electric potential energy is simply:

EV ∼ α . (3.6.3)

The total energy in the rest frame of this state is:

Ep1+p2 ∼ m1 + m2 + α , (3.6.4)

where m1 and m2 are the masses of the two particles, that we indi-
cate as p1 and p2. Let us suppose these two particles are going to
produce a strongly coupled bound state. Namely, let us consider the
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S-dual situation α → α−1. Having learned that working on a per-
turbative picture implies working “on the tangent space” of the real
physics world, we may expect that, what perturbatively are sums of
energies (related to entropies), in a non-perturbative situation should
better translate into products of weights in the phase space. Roughly
speaking, we should expect a relation of the type:

m1 +m2

mp1p2

= α , (3.6.5)

between the total rest energy of the two interacting particles and the
mass of their bound state. In the case of the proton-antiproton scat-
tering, at a center-of-mass energy higher than the proton mass by a
factor α−1em (the S-dual of the electromagnetic coupling) one can form
(pe), (pμ) intermediate bound states, that enhance the decay channels
and therefore the cross section, appearing in the form of a wide reso-
nance of the scattering amplitude around 125GeV. We will discuss in
detail these aspects in section 4.5.
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codes

4.1 The non-perturbative solution

The integral 3.1.4 contains in principle all the information about our
universe. As discussed in chapter 3, although on the large scale physics
is dominated by the configurations of highest entropy, the details of a
fundamental description of the microscopic world in terms of elemen-
tary particles and their interactions are better investigated by looking
at a particular selection out of the bunch of geometries. In particular,
when considering the theory in the continuum, the spectrum is inves-
tigated by looking at the most singular, i.e. less symmetric (and the-
refore also less entropic) string configurations. The reason is twofold:
on one side, only by looking at the intersection of the most singu-
lar configuration it is possible to learn about which symmetry, if any,
eventually survives; on the other side, physics of elementary particles
can only be experimentally investigated in very “singular” experimen-
tal devices, corresponding to very selected configurations (geometries)
of the universe. The fact of looking at such an experiment therefore
already in itself implies a very targeted operation of selection in the
phase space of all possible configurations of the universe.

In order to investigate the physical content of the theory we will
use a “perturbative” approach. In ordinary quantum field theory one
separates the time evolution into a free propagation and an interaction
part. The physical configurations are inspected via the conceptual se-
paration of a base of free states, eigenstates of the free Hamiltonian,
which are exact solutions of the free theory. As long as the coupling
of the interaction is small, the full solution can be considered a small
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perturbation of the free propagation, and the perturbative approach
makes sense. In our case, we have a truly non-perturbative string
system, in which even the space-time is mixed up, and in general will
not be factorizable into an extended one, “the” space-time as we ex-
perience it, and an internal space. Moreover, we can access the whole
theory only through “slices”, the perturbative (string) constructions,
to be treated as the patches, the “projections”, which allow to shed
light into the “patchwork”, the whole theory. Information about the
non-perturbative string properties will be obtained through heavy use
of string-string duality. To this purpose, one makes use of properties of
(extended) supersymmetry. Unfortunately, this implies working in flat
limits (decompactification limits) of the string space. In these limits,
the vacuum energy expectation value vanishes. Since we are interes-
ted in a description of a space-time of finite extension, this is rather
unphysical. In string theory one can explicitly break supersymmetry
and end up with a non-vanishing ground energy. However, this situa-
tion is anyway artificial, in that the very fact of explicitly observing
an operation in a perturbative construction implies working in a de-
compactified space, and therefore tells little-to-nothing about the real,
physical situation. Therefore, we will never see a full description of
the whole physical content, expressed in a nice, closed form through a
compact formula. Moreover, the traditional computational approach
to string scattering amplitudes will not tell us much about the real
situation of physical processes. Nevertheless, string theory is a neces-
sary passage toward a better knowledge of the physical content. In
our approach, masses, couplings, and amplitudes are related to occu-
pation volumes in the phase space. Their derivation and computation
must be performed within this context; the field theoretical approach,
with its refined technology, including renormalization, and renorma-
lizability, must be treated here as just an approximation, valid (and
unavoidable) when restricted to an appropriate range of fluctuation
around reference values derived through investigation of the phase
space.

Although the historical reasons that led to the introduction and
investigation of space-time supersymmetry are in our framework wea-
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kened and, in particular, as we will see, low-energy supersymmetry
does not play anymore a key role in the stabilization of mass scales
and in justifying a small value of the cosmological constant, never-
theless supersymmetry remains of key importance in the investigation
of non-perturbative properties of string theory. It allows in fact to
identify dual constructions through the behaviour of certain quanti-
ties depending on (and made stable by) a class of states belonging to
multiplets of representations of extended supersymmetry. Extended
supersymmetry proves therefore to be an exceptional tool in investi-
gating the structure of the string constructions, and we will use the
comparison of string duals at the extended supersymmetric level in
order to understand the symmetries of the lower (super)-symmetric
compactification, when approaching the most singular string vacuum.
Although not exactly the explicit formula one would dream of, this
will prove to be enough for many purposes, because, in order to inves-
tigate ratios of volumes in the phase space, what we need is basically
to know what are the operations we perform on a construction that
we keep under control.

Consistently with the fact that we are investigating a flat limit of the
geometry, we will follow the process of symmetry reduction through
the spectrum of possible string compactifications in the class of orbi-
folds. Orbifolds are particular string constructions in which the target
space is flat everywhere except from some special points, at which the
curvature is concentrated. Having full knowledge of the spectrum of
the perturbative states at any energy level, we are able to write the
partition function, the “one loop partition function”, which in prin-
ciple encodes all the information about the construction; with this it
is possible to explicitly perform one-loop computations of scattering
amplitudes and threshold corrections, and therefore compare string
duals through pure string computations. Z2 orbifolds are the best sui-
ted for our investigation, because they preserve the basic structure of
the target space as a product of circles (it becomes a generic product
of circles and orbifolded circles, S1/Z2) and mod-out the space by the
group with the smallest volume among all the orbifold operations. A
product of Z2 twist/shifts allows therefore to achieve a configuration
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with a smaller surviving symmetry group than those obtained through
any other product of orbifold operations. The most singular orbifold
will be the one with the highest amount of freely and non-freely ac-
ting Z2 shifts and twists. Fortunately, Z2 orbifolds are the easiest
and therefore the most investigated constructions 1. Their investiga-
tion allows to get an insight into properties which are typical of string
theory in itself: most of the investigations performed at other points
in the moduli space must in fact rely on geometrical properties of
smooth surfaces, and their singularities. Although for some respects
rather powerful, these techniques don’t allow to capture the presence
of states related to non-geometrical singularities, or even fail in gene-
ral for the simple reason that, owing to T-duality, the full string space
simply cannot be reduced to a geometric one 2.

4.1.1 Investigating orbifolds through string-string duality

Our starting point is a maximally supersymmetric string vacuum with
flat background given by a product of circles. The constraints of two-
dimensional conformal field theory impose that Z2 orbifold twists must
act on groups of four coordinates at once. Perturbatively, in any string
construction there is room for a maximum of three such operations,
one of which is however redundant, in that it leads, once combined
with the other ones, to the re-introduction in the twisted sectors of
the states projected out. Therefore, we can say that only a maximum
of two independent Z2 twists act effectively. However, the amount of
supersymmetry surviving to these projections, as well as the amount
of initial supersymmetry, is different, depending on whether we start
with heterotic, type I, or type II strings. This means that in any
construction not all the projections acting on the theory are visible.
Indeed, one of them is always non-perturbative. The reason is that,
by definition, a perturbative construction is an expansion around the
zero value of a parameter, the coupling of the theory, which is itself

1See for instance refs. [28, 29, 30, 31, 1, 3, 32, 2, 4, 33, 34, 6, 35, 36, 37, 38, 39, 40,
41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52].

2For examples, see for instance ref. [6].
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a coordinate in the whole theory. An orbifold operation acting on
this coordinate is forcedly non-perturbative 3. In the following we
will often make use of the language of string compactifications to four
dimensions, especially for what matters our reference to the moduli of
the string orbifolds. This will turn out to be justified “a posteriori”:
we will see that indeed the final configuration is the one of a string
space with all but four coordinates twisted and therefore “frozen”.
Only four coordinates remain un-twisted and free to expand, while all
the others remain stuck at the string/Planck scale. Massless degrees
of freedom move along these and expand the horizon of space-time
at the speed of light. Although not infinitely extended, this “large”
space is what in our scenario corresponds to the ordinary space-time.
The language of orbifold constructions in four dimensions is therefore
just an approximation, that works particularly well at large times.
Only at a second stage we will discuss how and where this picture
must be corrected in order to account also for compactness of the
space-time coordinates. Although somehow an abuse of language, this
approximation allows us to take and use with little changes many
things already available in the literature. In particular, for several
preliminary results and a rediscussion of the previous literature, the
reader is referred to [6].

Let’s see what are in practice the steps of decreasing symmetry
we encounter when approaching the most singular configuration. Al-
though the order in which we apply freely and non-freely acting orbi-
fold operations will be at the end irrelevant, it is convenient to organise
the analysis by considering first non-freely acting operations, i.e. pure
twists with orbifold fixed points. Starting from the M-theory confi-
guration with 32 supercharges, we come, by orbifold projection, to
16 supercharges and a gauge group of rank 16. Further orbifolding
leads then to 8 supercharges (N4 = 2) and introduces for the first
time non-trivial matter states (hypermultiplets). As we have seen in
[6] through an analysis of all the three dual string realizations of this
vacuum (type II, type I and heterotic), this orbifold possesses three

3A first investigation of a non-perturbative orbifold, which produces the heterotic
string, has been carried out in [53, 54].

101



4 The spectrum of the universe of codes

gauge sectors with maximal gauge group of rank 16 in each. The
matter states of interest for us are hypermultiplets in bi-fundamental
representations: these are in fact those which at the end will describe
leptons and quarks (all the others are eventually projected out). As
discussed in [6], in the simplest formulation the theory has 256 such de-
grees of freedom. The less symmetric configuration is however the one
in which, owing to the action of further Z2 shifts, the rank is reduced
to 4 in each of the three sectors. These operations, acting as rank-
reducing projections, have been extensively discussed in [2, 4, 6, 55].
The presence of massless matter is in this case still such that the gauge
beta functions vanish. In this case, the number of bi-charged matter
states is also reduced to 4× 4 = 16. These states are indeed the twis-
ted states associated to the fixed points of the projection that reduces
the amount of supersymmetry from 16 to 8 supercharges.

Let’s consider the situation as seen from the type II side. We indi-
cate the string coordinates as {x0, . . . , x9}, and consider {x0, x9} the
two longitudinal degrees freedom of the light-cone gauge. The trans-
verse coordinates are {x1, . . . , x8}. Here all the projections appear as
left-right symmetric. The identification of the degrees of freedom, via
string-string duality, on the type I and heterotic side depends much
on the role we decide to assign to the coordinates, as we will see in a
moment. By convention, we choose the first Z2 to twist {x5, x6, x7, x8}:

Z
(1)
2 : (x5, x6, x7, x8) → (−x5,−x6,−x7,−x8) , (4.1.1)

and the second Z2 to twist {x3, x4, x5, x6}:

Z
(2)
2 : (x3, x4, x5, x6) → (−x3,−x4,−x5,−x6) . (4.1.2)

These two projections induce a third one: Z
(1,2)
2 ≡ Z

(1)
2 × Z

(2)
2 , that

twists {x3, x4, x7, x8}:

Z
(1,2)
2 : (x3, x4, x7, x8) → (−x3,−x4,−x7,−x8) . (4.1.3)

Altogether, they reduce supersymmetry from N4 = 8 to N4 = 2, gene-
rating 3 twisted sectors. Depending on whether we consider the type

102



4.1 The non-perturbative solution

IIA or IIB construction, the twisted sectors give rise either to mat-
ter states (hyper-multiplets) or to gauge bosons (vector-multiplets).
As we discussed in ref. [6], a comparison with the heterotic and type
I duals shows that the underlying theory must be considered as the
union of the two realizations: owing to the lack of a representation
of vertex operators at once perturbative for all of them, for technical
reasons no one of the constructions is able to explicitly show the full
content of this vacuum. The matter (and gauge) content in these sec-
tors is then reduced by six Z2 shifts acting, two by two, by pairing each
of the three twists of above with a shift along one of the two coordi-
nates of the set {x1, . . . , x8} which are not twisted. Each shift reduces
the number of fixed points of a Z2 twist by one-half; two shifts reduce
therefore the matter states of a twisted sector from 16 to 4. Altogether
we have then, besides theN4 = 2 gravity supermultiplet, three twisted
sectors giving rise each one to 4 matter multiplets (and a rank 4 gauge
group). On the type I side, these three sectors appear as two perturba-
tive D-brane sectors, D9 and D5, while the third is non-perturbative.
On the heterotic side, two sectors are non-perturbative. As it can
be seen by investigating duality with the type I and heterotic string,
the matter states from the twisted sectors are actually bi-charged (see
refs. [56, 57], and [6]), something that cannot be explicitly observed,
the charges being entirely non-perturbative from the type II point of
view. The moduli T (1), T (2), T (3) of the type II realization, associated
respectively to the volume form of each one of the three tori {x3, x4},
{x5, x6}, {x7, x8}, are indeed “coupling moduli”, and correspond to
the moduli “S”, “T”, “U” of the theory. On the heterotic side, S
is the field whose imaginary part parametrizes the string coupling:
ImS = e−2φ. It is therefore the coupling of the sector that contains
the gravity fields. T and U are perturbative moduli, and correspond
to the couplings of the two non-perturbative sectors. On the type I
side, on the other hand, two of them are non-perturbative, coupling
moduli, respectively of the D9 and D5 branes, while only one of them
is a perturbative modulus, corresponding to the coupling of a non-
perturbative sector (see [45, 56, 58, 59]). Owing to the artifacts of the
linearization of the string space provided by the orbifold construction,
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gravity appears to be on a different footing on each of these three dual
constructions.

4.1.1.1 The maximal twist

The configuration just discussed constitutes the last stage of orbifold
twists at which we can “easily” follow the pattern of projections on
all the three types of string construction. It represents also the maxi-
mal degree of Z2 twisting corresponding to a supersymmetric confi-
guration. As we will see, a further projection necessarily breaks su-
persymmetry. The vacuum appears supersymmetric only in certain
dual phases, such as the perturbative heterotic representation. Non-
perturbatively, supersymmetry is on the other hand broken. This
means that, when further twisted, the theory is basically no more de-
compactifiable: perturbative phases represent only approximations, in
which part of the theory content and properties are lost, or hidden.
This is what usually happens for instance when one pushes to infinity
the size of a coordinate acted on by a Z2 twist. The situation is the
one of a “non-compact orbifold”.

The further Z2 twist we are going to consider is also the last that can
be applied to this vacuum, which in this way attains its maximal de-
gree of Z2 twisting. This operation, and the configuration it leads to,
appears rather differently, depending on the type of string approach.
Let’s see it first from the heterotic point of view. So far we are at
the N4 = 2 level. The next step appears as a further reduction to
four supercharges (corresponding to N4 = 1 supersymmetry). Of the

previous projections, Z
(1)
2 and Z

(2)
2 , only one was realized explicitly on

the heterotic string, as a twist of four coordinates, say {x5, x6, x7, x8}.
The further projection, Z

(3)
2 , acts on another set of four coordinates,

for instance {x3, x4, x7, x8}. In this way we generate a configuration
in which the previous situation is replicated three times. When consi-
dered alone, the new projection would in fact behave like the previous
one, and produce two non-perturbative sectors, with coupling para-
metrized by the moduli of a two-torus, in this case {x5, x6}: T (5−6),

U (5−6). The product Z
(1)
2 × Z

(3)
2 leaves instead untwisted the torus
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{x7, x8} and generates two non-perturbative sectors with coupling pa-
rametrized by the moduli T (7−8), U (7−8). Altogether, apart from the
projection of states implied by the reduction of supersymmetry, the
structure of the N = 2 vacuum gets triplicated.

The symmetry of the action of the additional projection with respect
to the previous ones suggests that the basic structure of the configu-
ration, namely its repartition into three sectors, S, T , U , is preserved
when passing to the less supersymmetric configuration. On the type I
dual realization of this vacuum, besides a D9 branes sector we have
now three D5 branes sectors and a replication of the non-perturbative
sector into three sectors, whose couplings are parametrized by U (3−4),
U (5−6), and U (7−8).

It is not possible to follow this operation on the type II side, where
the coupling of the heterotic construction would appear as a perturba-
tive, internal coordinate (S ↔ T exchange). The twist in the internal
perturbative coordinates is already the maximal one at the N2 = 2
level. In order to proceed further, one could decide to compactify
on a circle also the transversal space-time coordinates (which by the
way are eventually going to be considered as compact anyway), and
trust them as non-perturbative coordinates of the heterotic string.
However, in this case the coordinates to be identified with the phy-
sical space-time coordinates would be entirely non-perturbative, and
it would be the space-time supersymmetry (i.e. the supercurrents)
to be non-perturbatively realized. We would loose in any case the
possibility of explicitly following the effect of a further reduction of
supersymmetry.

A result of the combined action of these projections is that all the
fields Si, T j and Uk are now twisted. This means that their vacuum
expectation value is not anymore running, but fixed at a scale to be
identified with the string-string duality-invariant Planck scale. Ne-
vertheless, for convenience here we continue with the generic notation
S, T , U used so far, because it allows to better follow the functional
structure of the configuration we are investigating. Twisting of the
“coupling” moduli indeed suggests that the geometry is no more de-
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compactifiable. A signal is that, after the Z
(3)
2 projection is applied,

the so-called “N = 2 gauge beta-functions” are unavoidably non-
vanishing. According to the analysis of ref. [6], this means that there
are hidden sectors at the strong coupling 4. As a consequence, super-
symmetry is actually non-perturbatively broken by gaugino conden-
sation.

Since all the string coordinates apart from the space-time are twis-
ted, supersymmetry is broken at the string scale, a scale which, in a
string-string duality-invariant framework is eventually identified with
the Planck scale. This is therefore the scale at which, at the same time,
not only supersymmetry but also the weak-strong duality (S-duality)
is broken. A by-product is also that the space acquires a non-vanishing
ground energy, as it should be expected in a real, physical situation
(more on this later on).

By looking at the structure generated by this last projection, indeed
symmetric to the previous ones, we learn that the matter states of this
vacuum are three replicas of the chiral fermions of the theory before the

supersymmetry-breaking Z
(3)
2 projection. The gauge sectors appear as

partially perturbative on the type I side. However, the type I vacuum,
like the heterotic one, corresponds to an unstable phase of the theory:
it appears as supersymmetric although it is not. Moreover, inspection
of the gauge beta-functions reveals that they are positive. Therefore,
although appearing as free states, the states on the D-branes run to
the strong coupling and the apparent gauge symmetries are broken by
confinement.

Let’s summarize the situation. The initial theory underwent three
twists and now is essentially the following orbifold:

Z
(1)
2 × Z

(2)
2 × Z

(3)
2 . (4.1.4)

In terms of supercharges, the supersymmetry breaking pattern is:

32
Z

(1)
2−→ 16

Z
(2)
2−→ 8

Z
(3)
2−→ 0 (4 only perturbatively) . (4.1.5)

4We refer the reader to the cited work for a detailed discussion of this issue.
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The “twisted sector” of the first projection gives rise to a non-trivial,
rank 16 gauge group; the twisted sector of the second leads to the
“creation” of one matter family, while after the third projection we
have a replication by 3 of this family. The rank of each sector is then
reduced by Z2 shifts of the type discussed in refs. [1, 2, 4], two per
each complex plane. As a result, each 16 is reduced to 4.

On the type I side, the states appear in an unstable phase, as free su-
persymmetric states of a confining gauge theory, while on the heterotic
side they appear on the twisted sectors, and their gauge charges are
partly non-perturbative, partly perturbative. The perturbative part is
realized on the currents. Like the type I realization, also the heterotic
vacuum appears to be an unstable phase, before flowing to confine-
ment; both are indeed non-perturbatively singular, non-compact or-
bifolds. This reflects on the fact that, as also discussed in [6], both
on the heterotic and type I side, perturbative and non-perturbative
gauge sectors have opposite sign of the beta-function. This signals
that, as the visible phase is confining, the hidden one is non-confining.
The matter states of the theory consist therefore of a replica into three
families of a bi-charged complex state transforming as 4w× 4s, where
the 4w belongs to a weakly coupled sector, while the 4s to a strongly
coupled sector of the theory. Indeed, the fact that 1) with the last
twist supersymmetry is broken, 2) the internal string space is curved,
and 3) the coupling does not correspond anymore to a modulus but
is twisted, frozen at a value of order one in (duality-invariant) Planck
units, means that the theory in itself is at the strong coupling, and
that a perturbative realization is only possible as a projection onto
some subsectors. After further symmetry breaking the 4w will give
rise to the weak interactions, while the 4s to the strong ones.

In this discussion, we did not consider the details of the non-Abelian
gauge groups that arise. Indeed, gauge charges are only visible in the
heterotic and type I string constructions. However, technical artifacts
highly constrain the possible gauge groups. For instance, in the hete-
rotic construction the embedding of the spin connection into the gauge
group always singles out an U(2) (or, at the SU(2) extended symmetry
point, SU(2)×SU(2)) factor, which is not present on the type I side.

107



4 The spectrum of the universe of codes

On the other hand, the gauge sector which explicitly appears in the
heterotic construction is an artifact, representing an unstable phase
(N4 = 1) of a gauge sector which is indeed non supersymmetric and at
confinement. Therefore, we consider also this factorization as an arti-
fact of the linearization implied by the orbifold construction. Working
in a duality-invariant frame implies considering just the rank of the
symmetry groups. The only physical distinction that will eventually
matter will be whether the symmetry is realized perturbatively as non-
confining, in which case we will obtain all broken symmetries, or as
a confining sector, non-perturbatively realized, of which we just know
the rank and the number of matter states transforming in its funda-
mental representation. It is only by requiring to interpret it in terms of
gauge groups that will tell us that in our case the only possible choice
is an SU(3) group to be identified with the colour symmetry. Indeed,
owing to confinement, also this group is broken. In the following, for
the sake of simplicity we will assume the point of view of extended
symmetry, namely, ignoring the disappearance of the symmetry due
to confinement: n matter states transforming in the fundamental re-
presentation of a group will be considered as transforming in the n of
SU(n).

4.1.1.2 Origin of four dimensional space-time

The product (4.1.4) represents the maximal number of independent
twists the theory can accommodate: a further twist would in fact
superpose to the previous ones, and restore in some twisted sector
the states projected out. Therefore, further projections are allowed,
but no further twists of coordinates. The twists allow us to distin-
guish between “space-time” and “internal” coordinates. While the
first ones (the non-twisted) are free to expand, the twisted ones are
“frozen”. The reason is that the graviton, and as we will see the
photon, propagate along the non-twisted coordinates, and therefore
expand the universe by stretching its horizon, allowing us to perceive
these coordinates as our “space-time”. We get therefore “a posteriori”
the justification of our choice to analyze sectors and moduli from the
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point of view of a compactification to four dimensions.

4.1.1.3 In how many dimensions does non-perturbative String Theory
live?

Besides the above mentioned twists/shifts, the only way to further mi-
nimize symmetry is to apply further shifts along the non-twisted coor-
dinates. How many are they? From the type II point of view, there are
no further, un-twisted coordinates. But we know that they are there,
“hidden” as longitudinal coordinates eaten in the light-cone gauge and
in the coupling of the theory. Some of these coordinates appear on the
heterotic/type I side as two transverse coordinates. If we count the
total number of twisted coordinates by collecting the information co-
ming from intersecting dual constructions, and the coordinates which
are “hidden” in a certain construction and are explicitly realized in a
dual construction, we get the impression that the underlying theory
possesses 12 coordinates. For instance, on the heterotic side we have
a four-dimensional space-time plus six internal, twisted coordinates,
and a coupling. On the type II side we see eight twisted coordinates.
We would therefore conclude that the two additional twisted coordi-
nates correspond to the coupling of the heterotic dual. On the other
hand, no supersymmetric 12-dimensional vacuum seems to exist, at
least not in a flat space: the maximal dimension with these properties
is 11. This seems therefore to be the number of dimensions in which
non-perturbative string theory is natively defined. Let’s have a better
look at the properties of supersymmetry. As is known, the supersym-
metry algebra closes on the momentum operator. When applied to
the vacuum, we have: {

Q, Q̄
}
≈ 2M . (4.1.6)

From a dimensional point of view, a mass can be viewed as the inverse
of a length, so that we can also write:

<
{
Q, Q̄

}
>∼= 1

R
. (4.1.7)

109



4 The spectrum of the universe of codes

The supersymmetry algebra suggests that the mass on the right hand
side of 4.1.6, in all respects an order parameter for the supersymme-
try breaking, could be interpreted as the inverse of the length of a
coordinate of the theory. This coordinate refers to an extra internal
dimension, or, perhaps more appropriately, to a curvature, i.e. a func-
tion collecting the contribution of several coordinates, perturbative as
well as non-perturbative. We can therefore view the supersymmetric
phase as the limit R →∞ of a theory with generically broken super-
symmetry. This decompactification is only possible if the coordinate
R is not twisted. Precisely the fact that, in the breaking of N4 = 2
supersymmetry to N4 = 1, the dilaton and the other “coupling” fields
get twisted, is a signal that a non-vanishing curvature of the string
space has been generated. As we discussed in section 4.1.1.1, this
means that, even in the case of infinite volume, we are in a situation
of non-compact orbifold. In the orbifold language, this is implemented
by the fact that, whenever the coupling field is “explicitated” by going
to a dual construction, the corresponding perturbative geometric field
appears as a volume of a two-dimensional space. This phenomenon can
be observed for reduced supersymmetry (for maximal supersymmetry,
there is just the type II string construction). Consider for instance the
eleventh coordinate of M-theory, that should correspond to the dila-
ton of the heterotic string. In the type II orbifold constructions (K3
orbifold compactifications), the heterotic coupling corresponds to a
two-torus volume. Considering that this two-dimensional space cor-
responds, from the heterotic point of view, to “extra-coordinates”, one
would say that, in order to realize all these degrees of freedom, the
full underlying theory should be (at least) twelve-dimensional. Howe-
ver, this is only an artifact of the linearization implied by the orbifold
construction, and it means that the simple compactification on a circle
is not enough, we need an additional coordinate in order to parame-
trize a curved space in terms of flat coordinates. From the type II
dual we learn that supersymmetry is not restored by a simple de-
compactification: the string space is twisted 5. Flatness of the string

5In some type II/heterotic duality identifications, the heterotic coupling is said to
correspond to un-twisted coordinates of the type II string. This however does
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space is broken by a “twist” of coordinates that fixes them to the
Planck scale. As a consequence, the supersymmetric partners of the
low-energy states are boosted above the Planck scale. In a situation
of supersymmetry restoration, they should come down to the same
mass as the visible world, and space should become “flat”. However,
this is only possible when the twist is “unfrozen” and we can take
a decompactification limit, such as for instance the M-theory limit.
Otherwise, at the decompactification limit the space becomes only lo-
cally flat (non-compact orbifold). Let’s collect the informations so far
obtained:

1. As soon as the string space is sufficiently twisted, supersymmetry
is broken.

2. Equations 4.1.6 and 4.1.7 suggest in this case a non-vanishing
curvature of space.

3. In the class of orbifolds, the phenomenon of curving the string
space can only be partially and indirectly seen, through the com-
parison of dual constructions.

4. These constructions are built on a (perturbatively) flat, super-
symmetric background: they provide therefore “linearizations”
of the string space.

5. The maximal dimension of a supersymmetric theory on a flat
background is 11.

All this suggests that, when supersymmetry is broken, we are in the
presence of an eleven-dimensional curved background. Any, forcedly
perturbative, explicit orbifold realization requires for its construction
a linearization of the background. Since a 11-dimensional curved space
can be embedded in a 12-dimensional flat space, we have the impres-

not change the terms of the problem: in the artifacts of the flattening implied by
the orbifold constructions, part of the curvature may be “displaced”, referred to
some or some other coordinates. This “rigid” distribution of the twists, basically
dictated by the need of recovering a description in terms of supergravity fields
referring to the same space-time dimensionality for both the dual constructions,
may induce to misleadingly conclusions. The intrinsic twisted nature of the space
has to be considered by looking at the string space in its whole (for more details
and discussion, see for instance ref. [6]).
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sion of an underlying 12-dimensional theory. However, this is only an
artifact; in fact, we never see all these 12 flat coordinates at once: we
infer their existence only by putting together all the pieces we can
explicitly see. But this turns out to be misleading: the linearization
is an artifact.

The 12 dimensional background is only fictitious, we need it only
in order to describe the theory in terms of flat coordinates. At the
perturbative string level, of these coordinates we see only a maximum
of 10.

As a matter of fact, we are however in the presence of a maximum of
seven “twisted” coordinates, i.e. coordinates along which the degrees
of freedom don’t propagate, and four un-twisted ones, along which the
degrees of freedom can propagate. By comparison of dual string vacua,
we can see that there is room to accommodate more “perturbative” Z2

shifts: through the heterotic and/or type I realization in the light-cone
gauge we can explicitly see two more transverse coordinates which are
non-twisted, along which we can accommodate further independent
shifts, plus two longitudinal ones, along which no shift can act.

4.1.1.4 Shifting the space-time

Let’s count the number of degrees of freedom of the matter states.
We have three families, that for the moment are absolutely identical:
each one contains 4 (massless) chiral fermions with an “internal” mul-
tiplicity 4. The number of matter degrees of freedom is therefore the
right one in order to build up three families of massive doublets of
quarks (with multiplicity 3 out of the 4 of the internal symmetry) and
leptons (with multiplicity 1 out of the 4 of the internal symmetry).

Indeed, the {Z(1)
2 , Z

(2)
2 , Z

(1)
2 × Z

(2)
2 } structure can not only be realized

through so-called non-freely acting projections (i.e. pure twists) but
also by allowing a fully free action of one or two of these projections.
This is obtained by associating to the orbifold twist appropriate shifts
along some of the coordinates which are not twisted (see ref. [6], and
also [1, 4], for more details). Let us indicate the structure of the
“pure-twist” orbifold as (t, t, t). By an appropriate choice of shifts
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associated to the twists, it is then possible to realize the structures
(s, t, t), (s, s, t) and (s, s, s), where s and t respectively indicate the
nature of the projection (s = all states shifted; t = pure twist) on the
first, second and third complex orbifold plane. The difference between
these configurations is that in the (t, t, t) realization we have a replica-
tion of the matter states into three families, in the (s, t, t) realization
we have just two families, in the (s, s, t) one family, whereas in the
(s, s, s) there is no matter at all. All these constructions belong to the
string phase space, and contribute to the overall appearance of the
string realization of the scenario described by 2.1.16. The existence of
three different realizations of the Z2×Z2×Z2 orbifold plays a key role
for the mass differentiation between matter families: owing to this the
most singular configuration results from a superposition in which one
family is present only one time, one family two, and one three. In the
logarithmic picture the ratio of their phase space occupation volumes
is therefore 3:2:1. However, as long as only operations acting on the
“internal” string space are concerned, all matter states are massless.
Masses are introduced by shifts acting on the non-twisted coordinates.
These are the coordinates to be identified with the space-part of space-
time. Matter states “projected out” by this kind of orbifold operation
are not thrown out from the spectrum of the low energy theory, but
acquire a mass related to the scale of space-time. Compactifying the
coordinates of space-time implies a change of perspective as compa-
red to the usual approach to string theory. The bosons Xμ, Xν are
no more to be considered as “living in a space framework” of infinite
extension, but describe an expanding space of finite volume. Massless
fields such as the graviton (and the photon, of which we will talk in
the next section) expand the space by stirring the horizon. The light-
cone gauge can be considered as parametrizing the tangent space to a
point of the horizon, as illustrated in picture 4.1. Normally, a horizon
is a curved surface that works as the boundary of a flat space. For ins-
tance, a 2-sphere as boundary of a 3-ball. Nevertheless, the horizon of
our physical universe encloses a region of curved space. The reason is
due to an artifact produced by the propagation of light. The 2-sphere
that seems to have volume (surface) πT 2, where T is the age of the
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propagation of massless fields

tangent plane

curved space = 3−sphere

Figure 4.1: The physical space is here represented by a ball. It is
indeed a 3-sphere (plus quantum corrections). The trans-
verse coordinates of the perturbative string construction
represent the tangent space, out of which the graviton pro-
pagates along the normal to the tangent plane, stirring the
horizon and thereby expanding the universe.
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origin: the horizon shrunk to a point

horizon

observer

Figure 4.2: The horizon of the universe, here sketched in a simplified
way as a disc, in reality a 2-sphere, shows the origin (in
temporal sense) of the universe. In our scenario, where
the universe expands at the speed of light, this implies it
is also the origin in spatial sense. It corresponds therefore
to a point (of Planck size). When shrunk to a point, the
space “flowing” from the observer to the point at the origin
constitutes a curved space, with curvature ∼ 1/T 2. This is
the curvature of a space with energy content corresponding
the actual value of the cosmological constant Λ.

universe as expressed in light years, indeed corresponds to a “point”,
the origin of the universe. Whereas in general this point is to be in-
tended just in atemporal sense, in our scenario, where the universe
expands at the speed of light, this is a point (of Planck size) also in
spatial sense. It is his dual interpretation/identification what allows
to see the space as curved (see figure 4.2) to a geometry consistent
with the value of the cosmological constant.

Let us see what are the possible operations that lead to the most
singular compactifications. Along the two transverse coordinates of
space time, which, although of large extension, are anyway compact,
it is possible to act with two independent Z2 shifts. Each of them may
in turn act either on the momenta, or on the windings of the bosonic
lattice (or even on both at the same time). In all these cases, there
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are states which acquire a mass. Depending on the kind of action,
the latter can run as the inverse of the radius of compactification:
m ∼ 1/R (momentum-shift), or as the radius: m ∼ R (winding-
shift), or in a T-duality-invariant way, m ∼ 1/R + R (momentum-
and winding-shift). We obtain therefore a whole bunch of situations,
that staple up to produce the spectrum of elementary particles and
fields, that we now analyze in detail. The pairing of the shift with the
orbifold twist can be of two kinds: either 1) it acts by lifting the mass
of all the states of a twisted sector, or 2) it acts on linear combinations
of the states, in such a way to reduce the rank of the symmetry group,
or the number of states, by a factor two. Both these kinds of operation
are considered in ref. [6].

Let us consider the first type of pairing, case 1). In this case, all
the states twisted by the corresponding Z2 twist become massive. De-
pending of whether the shift acts on the momenta or on the windings,
or on both, we obtain an over-Planckian mass (winding-shift) or a
sub-Planckian mass (pure momentum-shift, m ∼ 1/R). In the first
case, all the states disappear from the low-energy spectrum. In the
second case, they become massive states of the low-energy spectrum,
with a sub-Planckian mass. They are therefore experimentally ob-
servable. The four chiral fermions of a twisted sector must now be
interpreted as two massive fermions. As a consequence, the SU(4)
acting on chiral fermions becomes an SU(2) acting on massive states.
Indeed, it is a broken SU(2), because the shift lifts also the mass of the
gauge bosons. Strictly speaking, there is no more gauge group, but,
in case of sub-Planckian mass, it is still possible to speak of massive
bosons. However, the operation on the bosons cannot be explicitly
observed, being these states non-perturbative in a construction (the
heterotic one) in which the matter states are visible, and realized on
the twisted sector.

In case 2), only half of the matter states is mass-lifted. We are left
with two massless chiral fermions transforming under one of the two
SU(2) subgroups of SU(4) ⊃ SU(2)× SU(2). In case of momentum-
shift, when the stapling of this configuration with the one of case 1) is
considered, the situation must be interpreted as describing a parity-
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breaking interaction of two massive fermions in which only one of the
two chiralities transforms under an SU(2) symmetry. We can call

the two chiral spinors ψ
(1)
L , ψ

(2)
L , and the surviving symmetry group

SU(2)L. From the staple of the two configurations we obtain therefore
the realization of the parity-breaking chiral (i.e. only left-handed) cou-
pling of the weak interaction, realized as a “lightly” broken symmetry
with bosons of sub-Planckian mass.

In case of winding- (or momentum+winding-) shift, we do not have
anymore in the spectrum the right-handed part of the matter states.
We just have two massless chiral spinors. Owing to the absence of
chiral partners, and, still owing to the fact that the configuration
will eventually staple with the previous one, by consistency we are left
with the only possible interpretation of these degrees of freedom as the
left-and-right moving part of a single particle, which will eventually
become massive thanks to the stapling, but that must be considered
as a linear combination of the degrees of freedom of the other configu-
rations. Since the SU(2) that rotated just the left-moving part of the
massive fermions is now “transversal” to the states of this construc-
tion, which are the left- and the right-moving part of a single particle,
we cannot consider these two degrees of freedom as rotated into each
other by SU(2) ≡ SU(2)L: they are rotated into each other by ano-
ther symmetry, deriving from the breaking of an SU(2) transversal to
SU(2)L, however still a subgroup of the initial SU(4). It is an SO(2)
symmetry, that we interpret as U(1). The symmetry of the construc-
tion tells us that also the other two degrees of freedom possess a similar
symmetry, that we cannot see just because we cannot view gauge sym-
metries once the states are massive. However, in this way, we can see
where the mass gap between pairs of the broken SU(2)L symmetry
group comes from. The stapling of all these operations realizes the-
refore the breaking of SU(4) to U(1) × SU(2)L. The massive state
whose left and right moving part correspond to these two degrees of
freedom has therefore the following transformation properties under
U(1) × SU(2)L: its left-moving part is charged under SU(2)L, while
the right moving part is uncharged. Both the left and right moving
part are charged under U(1). Since it derives from the Cartan of an
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SU(N) group, this U(1) is necessarily traceless. As we will see in
section 4.1.2, the tracelessness condition is not realized simply among
the degrees of freedom deriving from the initial 4 of SU(4): the intro-
duction of a mass gap implies also different charge, i.e. interaction,
properties, leading to a different weight in the phase space. Each one
of these degrees of freedom transforms also under a non-perturbatively
realized representation of a 4 of SU(4). The condition of tracelessness
is realized by summing on this “internal” index. In section 4.1.2 we
will come back to the point that the orbifold twist that reduces su-
persymmetry from N4 = 2 to N4 = 1 indeed breaks supersymmetry
completely to N4 = 0 while sending part of this internal sector to the
strong coupling. We will discuss how this implies the breaking of the
4 into 1+ 3, giving rise to the separation in leptons and SU(3) quark
triplets.

In the orbifold construction, based on a factorization of space, the
space part of space-time is realized as a product of circles, two of which
appear as independent transverse coordinates. It would seem that in-
dependent orbifold operations (e.g. a combined action of both the
two above described shifts) are allowed. However, although possible,
and therefore present in the sum 2.1.16, configurations leading to an
asymmetrical ground geometry of space are entropically unfavoured:
entropy favours a geometry in which a massless field such as the gra-
viton expands the universe, by stirring its horizon, in a symmetrical
way, i.e. producing the geometry of a sphere. Of course, the stapling
geometries, and the presence of matter states associated to shifts along
the space coordinates, will eventually break this symmetry. However,
this is a second order effect, a “soft” breaking. For the purpose of the
present discussion, we must assume that the independence of the two
transverse space coordinates is an artifact of the linearization of space
introduced by the factorization of the string space into a product of
circles. As soon as the string space is curved, consistently with a non-
vanishing net matter/energy content, the extended space is more like a
sphere (see chapter 2), with only one radius, and radial coordinates. It
does not make sense to consider combinations of the two shifts above
described, as they would seem to be allowed by picking independent
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shifts along the two circles of the transverse extended space, nor to
distinguish whether a shift is taken along one or both of these coor-
dinates. The configurations we have described, obtained by applying
only one of the two shifts at once, exhaust all the possibilities.

We are now in a position to refine the evaluation of the ratios of
volumes introduced by the stapling of configurations with one, two,
and three matter sectors. Considering just the spread of configurations
produced by shifts acting on the internal coordinates we arrived to
the conclusion that these ratios are 3:2:1. Indeed, these states become
massive due to shifts along the space coordinates of space-time, and
the combinatorial possibilities of realizing these shifts must be taken
into account in order to give a finer evaluation of the ratios of volumes.
Up to permutations of the three sectors, and the two transverse space
coordinates, in the case of just one twisted sector (orbifold “(t, s, s)”)
we have only one possibility for the momentum shift of type 1). In the
“(t, t, s)” orbifold, we have the possibility of mass-shifting one or two
sectors. Therefore, when their stapling is considered, one family gets a
mass “twice” as large as the other one. In the “(t, t, t)” orbifold, there
are always at least two sectors which get mass-shifted: in one case,
when the momentum shift involves just one orbifold twist, we have
two massive sectors; when it involves two (independent) orbifold twists
(and the shift is taken along the other of the two space coordinates),
all the three twisted sectors are massive. Let us now consider stapling
all these configurations on top of each other. Since families do not
bear a label, but are just identified according to their mass properties,
we must consider to staple the average volumes, or masses, of any
type of orbifold. Normalized to the (t, s, s) case, which therefore has
conventionally volume 1, the shifted (t, t, s) orbifolds contribute to an
average mass (2 + 1)/2 for two families, and the (t, t, t) to an average
mass (2 + 2 + 1)/3 for three families. The lightest family appears in
only one case, namely when there are three twisted sectors ((t, t, t)
case), then at a higher level we have the second family, which appears
when we have two and three twisted sectors ((t, t, s) ∪ (t, t, t) case),
and finally the heaviest family, which is the one appearing in all three
orbifold cases ((t, s, s)∪(t, t, s)∪(t, t, t) case). The mass ratios formerly
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given as 3 : 2 : 1 are therefore corrected to:

V (3) : V (2) : V (1) �
[
5

3
+

3

2
+ 1

]
:

[
5

3
+

3

2

]
:
5

3
. (4.1.8)

In order to pass to the concrete computation of masses, first of all
the volume ratios 4.1.8 must be transformed into mass ratios. Let
us introduce the coefficients A(i), i = 1, 2, 3 defined as A(1) ≡ 5/3,
A(2) ≡ 5/3+3/2, and A(3) = 5/3+3/2+1. Since they were computed
in a logarithmic realization of the physical geometry, in terms of the
“real” coordinates they correspond to mass expressions of the type:

lnm(i) ∼ A(i)κ lnR , (4.1.9)

where we have introduced the real mass m, the real radius of space,
R, of which the orbifold radius is a logarithm (1/R ∼ κ lnR), and
allowed for the presence of a coefficient κ, because as yet we did not
discuss the overall normalization. Mass ratios between families are
therefore of the type:

m(i)

m(j)
∼ (Rκ)A(i)

(Rκ)A(j)
. (4.1.10)

Mass ratios will however be the same if all masses are multiplied by
a common factor, which may depend on R. Indeed, considering the
orbifolds (t, t, t), (t, t, s) and (t, s, s) tells only about mass differences
through generations. However, all particles receive also a mass contri-
bution from the “zero” sector, namely the (s, s, s) orbifold, which does
not contain matter states, but can bear a shift along the space coor-
dinates as well, contributing to a ground energy of the matter sector.
This is the configuration with no matter, and it contributes with a va-
nishing term to the sum of contributions to a mass in the logarithmic
picture. It must be considered as the scale reference (the zero of the
scale) in the additive representation of what, out of the tangent space,
are products of weights. The (s, s, s) space-shifted orbifold provides
therefore for a multiplicative factor, the factor common to all masses.
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In the logarithmic picture, the “vacuum” contribution in the matter
sector is:

lnM0 = −1
2
lnR . (4.1.11)

When pulled back to the physical picture, it gives a ground rest energy
contribution:

M0 =
1

2
√
R

(
≡ 1

2
√
T

)
. (4.1.12)

The factor 1
2 normalizing the mass is here introduced because R is a

radius, and masses are the lowest momentum in a compact space with
periodicity given by the full length of space, therefore twice the radius.

The coefficient κ in 4.1.9 and 4.1.10 is calculated by taking into ac-
count the amount of projections actually acting on the matter sector
in order to break the symmetry not only, as we did, between fami-
lies, but also within each family, leading to a hierarchy of particles
subdivided into leptons and quarks (breaking of S-duality), each of
them in turn divided into “up” and “down” of a broken SU(2). A
detailed computation will be done in section 4.2, and it will end up in
the evaluation of the volume of the broken symmetry factor between
the lightest particle of the first and second family, an SU2) symmetry
which cannot be considered a gauge symmetry being the gauge bosons
completely absent from the sub-Planckian spectrum. This will give us
the ratio: m(2)

m(1)
∼ Rκ(A(2)−A(1)) , (4.1.13)

as a function of the SU(2) coupling. In this way we will determine
the coefficient κ, and from 4.1.8, 4.1.10 and 4.1.12 the absolute mass
values of the three lightest particles (to be eventually identified with
the neutrinos) given as:

mi = M0 ×m(i) i = 1, 2, 3 . (4.1.14)

Notice that the shifts along the space coordinates break the Lorentz
symmetry. Therefore, the superposition of differently shifted configu-
rations not only implies the breaking of parities, but also the breaking
of the symmetry of space under rotations. This occurs at the same
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4 The spectrum of the universe of codes

time as masses are produced: the amount of breaking of space rota-
tions produced is of the same order of the particle masses.

4.1.2 The photon and the SU(3) of QCD

Let us go back for a moment to the Z
(1)
2 × Z

(2)
2 × Z

(3)
2 orbifold point,

before the introduction of shift operations on the extended space co-
ordinates. Since this orbifold is symmetric under the exchange of each
projection, the superposition of configurations which breaks the sym-
metry in the weak sectors analogously breaks also the strong sector:
also the internal 4 of each bi-charged fourth-plet gets broken. The
pattern of the breaking must therefore be compatible with an effec-
tive description in terms of gauge field theory. This requires that,
since the gauge sector is at the strong coupling, the interpretation we
give to this breaking is that the initial 4, corresponding to SU(4), has
been broken into 1⊕3, i.e. the gauge group to U(1)×SU(3). Only in
this way we have in fact gauge and matter degrees of freedom in the
right amount to give rise to a confining gauge group representation,
that we identify with the quarks colour group: SU(3) ≡ SU(3)c. The
four states transforming in the 3 are to be identified with the quark
colours, whereas the singlet is a lepton. Since all these states factorize
an U(1)×SU(2)L symmetry index, they split into “up” and “down” of
the SU(2)L symmetry. Conversely, one could say that, for each of the
three matter families, the doublet of states charged under the chiral
SU(2)L broken symmetry group breaks into a singlet and a triplet of
SU(3)c. Since the 3 is strongly coupled, the three degrees of freedom
are in practice paired, so that the symmetry breaking is effectively a
4 → 11 + 12 breaking, the 11 being a trivial singlet of SU(3) corre-
sponding to a state charged only under U(1), the 12 being instead a
singlet of SU(3) made out of three charged states.

Once space-time is shifted as described in section 4.1.1.4, the fact
of having different symmetry properties produces a mass gap between
11 and 12, which adds to the mass gap introduced by the breaking of
SU(2)L. Of course, quarks are expected to weight more than leptons,
because they bear a further symmetry index.
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4.1 The non-perturbative solution

All these states are charged under U(1). Like the one singled out
by the symmetry breaking in the perturbative gauge sector analyzed
in section 4.1.1.4, deriving from the breaking of an SU(N) symmetry
also this U(1) is traceless. It combines with the other one to give
rise to a unique U(1) symmetry, the only symmetry that survives in
this symmetry breaking scenario 6. Coming from the breaking of an
SU(4)(×SU(4)) symmetry, the U(1) factor is traceless. This means
that it acts by transforming with opposite phase states charged under
SU(3) and uncharged ones:

U(1)ϕ = eiβ ϕ ,

(4.1.15)

U(1)ϕa = e−iβ/3 ϕa , a ∈ 3 of SU(3) .

Here ϕ indicates a full chiral fourth-plet of the weak sector. These
states, as we have just seen, arrange into massive doublets of a broken
weakly coupled SU(2), that we identify with the symmetry group of
the weak interactions. The condition on the trace of U(1) holds for
SU(2) doublets, but tells nothing about the charge assignments among
the states of each SU(2) pair. This indication comes from a further
condition, namely the fact that the strength of the U(1) interaction
is in this context by definition related to the weight this interaction
has in the phase space of all the configurations. Since quarks occur
three times more than leptons (remember that each fourth-plet, or
equivalently each SU(2) doublet pair, bears an internal multiplicity
4 = 1leptons + 3quarks), we obtain the following condition on the charge
Q: ∑

quarks

|Q(U(1))| = 3
∑

leptons

|Q(U(1))| . (4.1.16)

Besides this, we have also the condition 4.1.15 on the trace that in

6From a physical point of view, the two U(1) are the same symmetry group: what is
split into two sectors is only our representation of this physical situation. Indeed,
we have to deal with the very same states, which bear two SU(N) indices (SU(2)L
and SU(3)c), and a U(1) charge.
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4 The spectrum of the universe of codes

terms of the charge can be written as:∑
leptons

Q(U(1)) = −
∑
quarks

Q(U(1)) . (4.1.17)

The fact that these conditions hold separately for each of the three
matter families implies that in each family there must be one state
withQ(U(1)) = 0. This must necessarily be identified with the lightest
particle of each family. If we call the leptons of the fourth-plet in the
usual way neutrino and electron, and the quarks down and up quark,
and set by convention Qe = −1, from 4.1.15, 4.1.16 and 4.1.17 we
derive the charge assignments Qν = 0, Qu = 2/3, Qd = −1/3. The
U(1) gauge group has all the characteristics of U(1)γ, the group of
electromagnetism. The corresponding vector field is the photon, and
the neutrino, being the less interacting particle, must be identified
with the lightest of the fourth-plet.

The spectrum does not contain the degrees of freedom of a possible
Higgs boson. On the other hand, here there is no need of such a
field, because masses are generated with a pure stringy mechanism,
and are basically related to the compactness of the whole space. As
remarked in section 3.5, the Higgs boson of ordinary field theory can
in some way be thought of as the parametrization of a boundary term
through a field propagating in the bulk of space 7 (in section 4.5.2 we

7It is legitimate to ask what is the mass scale of the gauge bosons of the “missing”
SU(2), the would-be SU(2)R of the original weak fourth-plet, 4 = 2L + 2R.
Namely, asking whether there is a scale at which we should expect to observe
an enhancement of symmetry. The answer is: there is no such a scale. The
reason is that the scale of these bosons is simply T-dual, with respect to the
Planck scale, to that of the masses of particles. Let’s consider this shift as
seen from the heterotic side. On the heterotic vacuum, matter states originate
from the twisted sector, while the gauge bosons (the visible gauge group, the
one involved in this operation) originate from the currents, in the untwisted
sector of the theory. Similarly, on the type I side, gauge bosons and the charged
states we are considering originate from D-branes sectors derived respectively
from the untwisted, and the twisted orbifold sectors of the type II theory they
were derived from (The type II vacua are on the other hand not appropriate
for the investigation of this phenomenon, because the gauge charges are non-
perturbative. In any case, although in the form of just the Cartan subgroup
of their symmetry group, gauge bosons and matter states arise from mirror
constructions, related each other by the type II dual of the heterotic T-duality
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4.1 The non-perturbative solution

will comment about the 125 GeV resonance detected at LHC [60], and
usually seen as a signal of the Higgs boson).

4.1.3 The fate of the magnetic monopoles

Under the conditions of the scenario we are discussing, namely of a
universe “enclosed” within a finite, compact space, also the issue of
the existence of magnetic monopoles changes dramatically. Magnetic
monopoles can be of two kinds: the “classical” ones, namely those
associated to a non-vanishing “bulk” magnetic charge that parallels
the electric charge in a symmetric version of the Maxwell’s equations,
and the topological ones. In our scenario there are neither classi-
cal nor topological monopoles. The existence of classical monopoles
would be possible only in the absence of an electromagnetic vector
potential, what we have called the “photon” Aμ; their existence has
therefore been ruled out as soon as we have discussed the existence
and the masslessness of this field. The first idea about the existence of
magnetic monopoles in the classical sense (i.e. non-topological) origi-
nated by a request of symmetry: were not for the absence of magnetic
charges, the Maxwell equations would be completely symmetric in the
electric and magnetic field. However, the symmetry of these equa-
tions, preserved in empty space, is precisely spoiled by the presence of
matter states that are also electrically charged. In our scenario, the
description of the universe is “on-shell” and the presence of matter
comes out as “built-in”: it cannot be disentangled from the existence
of space itself. In this scenario there are no topological monopoles ei-
ther. Since all vector fields are twisted (i.e. massive at the Planck scale
or above it) with the only exception of the photon Aμ, propagating in
the four-dimensional space time, and since this space-time dimensio-
nality is electro-magnetically self-dual, the only possible topological

under consideration, see discussion in ref. [6]). It is therefore clear that a shift
on the string lattice lifts the masses of gauge bosons and those of matter states
in a T-dual way. Since the scale of particle masses is below the Planck scale,
the mass of these bosons is above the Planck scale; at such a scale, we are not
anymore allowed to speak of “gauge bosons” or, in general, fields, in the way we
normally intend them.
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4 The spectrum of the universe of codes

monopoles would be those of the four-dimensional space coupled to
the same photon field Aμ, namely, configurations à la t’Hooft and Po-
lyakov or similar 8. However, any such topological configuration is
characterised by its being living in an infinitely-extended space: only
in this way it is in fact possible to make compatible the existence of a
p-form working as a “potential” A(p), defined as an analytic function
in every point of the space, with the presence of a non-trivial magnetic
flux. As is well known, the magnetic flux through a surface can be
computed as a loop integral of the vector potential. In the case of a
surface enclosing a finite volume, the total flux is the sum of the loop
integral circulated in both the opposite directions, so that it always
trivially vanishes. However, things are different if the field has a non-
trivial behaviour at infinity. At infinity we need just the circulation
in one sense, because there is no “outside” from which field lines can
“re-enter” in the space: if there is a non-vanishing circulation, there
is a non-vanishing magnetic flux, and therefore also a non-vanishing
magnetic charge. This however also means that, provided it exists,
such a magnetic monopole is a highly non-localised object, with a
magnetic field/vector potential such that the magnetic flux vanishes
through any compact finite closed surface 9. As a consequence, also
the magnetic charge density vanishes point-wise at any place in the
“bulk”. Therefore, in our setup, where space is compact, these mo-
nopoles cannot exist. Moreover, in our case we don’t have a Higgs
mechanism either, and, since the surface at infinity does not belong to
any configuration of space-time, there is no smooth limit with a true
restoration of the conditions at infinity allowing the existence of non-
trivial topologies and homotopy groups. Light states with topological
magnetic charges do not exist at all, not even approximately as the

8for a review and references, see for instance [61, 62].
9Notice that the situation around the zero-dimensional point is equivalent to the
one around the surface at infinity: if on one side the Dirac string can be consi-
dered as somehow the “dual” picture of the surface at infinity of the t’Hooft and
Polyakov construction, in our scenario both infinity and the dimensionless point
are excluded. Differential geometry and gauge theory are here only approxima-
tions.
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4.2 Masses and couplings

time becomes very large 10.

4.2 Masses and couplings

4.2.1 The mass of a particle

We consider now the masses of the elementary particles. In the string
representation, masses arise as ground momenta associated to the
states of the string spectrum in a shifted, i.e. contracted, space. Since
through 3.1.4 the string scenario is a representation of the combinato-
rial one, even in the string space a mass is related to the weight of a
certain state in the phase space. In the ordinary perturbative approach
to field theory (no matter whether it is string-inspired, string-derived,
or not) masses, after they have been introduced via some mechanism
(Higgs mechanism), are attributes which in general receive corrections
at various perturbative orders. The corrections appear as the sum of
a series of insertions in the free propagator:
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m m0

= + + ... +

(4.2.1)

Mass and volume in the phase space are related by the fact that the
more are the decay channels of a particle, the larger is its entropy, and
also the correction to the mass, because higher is the number of virtual
processes contributing to the mass renormalization. Heavier particles
possess a larger decay phase space: quarks are heavier than leptons,
and among leptons neutrinos are the lightest particles. Inside each fa-

10The situation is similar to the case of the volume of the group of translations and
its identification with the regularized volume of space in the usual normalization
of operators and amplitudes, completely absent in our scenario, something that
leads to a different interpretation of string amplitudes as global quantities instead
of densities, cfr. section 3.1.3.
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4 The spectrum of the universe of codes

mily of particles, the heavier (for instance the top as compared to the
bottom of an SU(2) doublet) has the larger absolute value of the elec-
troweak charge. In each family, the lightest particle is the one which
has less interactions, or less charge (and therefore a lower interaction
probability). For instance, |Qν| < |Qe|, |Qb = −1/3| < |Qt = +2/3|,
and quarks, that feel also the SU(3) interactions, are heavier than
leptons 11. Along this line, we can view the lightest particle as the
end-point of a chain of projections that reduce the symmetries of the
internal space. Heavier particles are therefore those which “occupy” a
larger space; they correspond to a larger internal symmetry than ligh-
ter particles. Lighter particles correspond to sub-volumes, sub-spaces
of those of the heavier particles: the phase space of lighter particles is
contained in the phase space of heavier ones. To figure out this point,
consider for instance the case of a heavy particle that decays into ligh-
ter ones: the physics of these latter is “contained”, in the sense that
it is produced, derived, by the physics of the heavier one. In terms of
combinations of distribution of energies, this simply means that the
ways of distributing an amount of energy E along space include as
a subset the ways we can distribute an amount E ′ < E. Since mass
ratios are related to ratios of occupation volumes in the phase space,
and volumes are related to the amount of symmetry, mass ratios turn
out to be related to the strength of broken symmetry groups. In our
scenario, this is by definition the coupling of the group. For instance, if
a mass gap is generated by the breaking of an SU(2) symmetry factor,
the mass ratio will be given by the strength of αSU(2). We will derive
mass relations in the logarithmic picture (section 4.2.1.5), in which
the multiplicative structure of the phase space symmetry groups is
mapped into the additive structure of algebras. Instead of couplings
one works with the so-called beta-function coefficients. Group ratios
result there in differences of beta-function coefficients. In our scenario,
the strength α(G) is by definition proportional to the volume of the
group, ||G|| (not to be confused with the volume of the Lie algebra

11The first quark family apparently makes an exception: the down quark is heavier,
although less charged, than the up quark. This issue will be discussed in detail
in section 4.3.2.3.
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||g||), and we can write:

α(Gi)

α(Gj)
=
||Gi||
||Gj||

. (4.2.2)

Since masses are related to volumes of symmetries, we can write a
similar expression:

mk

m	
=
||Gk||
||G	||

. (4.2.3)

By comparison of these two expressions we obtain:

mk

m	
=

α(Gk)

α(G	)
. (4.2.4)

This expression can also be written as:

mi

mj
= α(Gij) = ||Gij|| , (4.2.5)

where Gij is a coset. In the logarithmic picture the couplings read:

1

αi

∣∣∣∣
log

=
1

α0
+ βi lnμ , (4.2.6)

where μ = R is the scale of space, to be eventually identified with the
age of the universe T . Ratios become differences, and we can write:

αi
αj
→ 1

αi

∣∣∣∣
log

− 1

αj

∣∣∣∣
log

= (βi − βj) lnμ , (4.2.7)

where βi, βj, are the volumes of the symmetry groups Gi, Gj in the lo-
garithmic representation. In a context of group of renormalization, we
would call them the beta-function coefficients of the symmetry groups.
Since all couplings unify at the Planck scale, in expression 4.2.7 we
have considered the additive bare value α0 to be the same for all of
them. This holds if we identify μ with T , the age of the universe.
Pulled back to the exponential picture the ratios of masses become
then:

mi

mj
= α(Gij) = T βi−βj . (4.2.8)
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In order to obtain the masses, we must therefore obtain the “beta-
functions” βi, βj. In the following, we will proceed to a detailed
evaluation of the mass-gap relations as obtained from the stapling
of configurations in the logarithmic picture, and relate them to sym-
metry breaking factors. The Z2 orbifold pattern through which the
staple of configurations is obtained allows to identify as elementary
ingredient of all mass relations the coupling of an SU(2) symmetry,
not to be confused with the coupling of the SU(2)L symmetry of the
weak interactions: they turn out to be related, but, as the two symme-
tries are differently defined (SU(2)L acts chirally on the states), also
the coupling strength is different. In first approximation, all the mass
gaps can be reduced in different proportions to this elementary step
(the approximation is due to the fact that we try to derive masses of
free particles, in a scenario in which part of the spectrum is effectively
strongly coupled). Once obtained the beta-function coefficient of this
elementary block, the coupling strength will be obtained by pulling it
back, through exponentiation, to the physical picture.

4.2.1.1 The SU(2) coupling

In order to compute masses, what we need to know is the beta-function
of the broken SU(2) group which constitutes the basic ingredient of
mass ratios. The beta-function coefficient obtained in the logarithmic
picture will become an exponent, i.e. the power to which the radius
of the space from the observer up to the horizon (or, equivalently, the
age of the universe) must be raised in order to obtain the expression of
the effective coupling. In order to determine the SU(2) beta-function,
we will derive the volume occupied by the broken SU(2) by counting
the volume reductions produced by the various projections we have
applied in order to reach the configuration of minimal symmetry. Since
our scope is to count a volume fraction within the (massive) matter
sector of the physical configuration, the counting must not be done
over the full range of string constructions, but just over the span of
the massive, physical constructions. Therefore, the effective counting
goes from the very latest Z2 shifts, the one breaking the SU(2) of weak
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interactions to just one chiral factor, SU(2)L, and the one producing
masses for all the matter sector, thereby combining left and right
moving part of each fermion into one single state, up to the N4 = 2
point, where the gauge beta-functions vanish. This latter sets the
upper bound of the range of projections, because it is starting from
this that, by further orbifolding, supersymmetry is broken (entirely,
not just partially, broken), leading to a non-vanishing ground energy
and therefore a non-flat geometry. At the N4 = 2 level, which is here
the minimal really fully supersymmetric level, even in the presence
of shifts along the space-time coordinates masses would be physically
irrelevant, because any contribution of a massive particle would be
cancelled by the contribution of its superpartners. The projections
that effectively produce the elementary spectrum are therefore:

i) the twist that breaks supersymmetry from N4 = 2 to an appa-
rent N4 = 1, raising the number of families from one to three,
and at the same time breaking the symmetry between leptons
and quarks by confining the latter ones, breaking thereby su-
persymmetry to an effective N4 = 0. This entails an SU(2)
breaking factor, because the 4 containing the lepton as 1 and
the quarks as 3 is indeed broken in two parts, as 1 + 13, being
the degrees of freedom of the 3 confined into one single strongly
coupled state, which, for the electro-weak group, effectively has
the same transformation properties of an “up-down” lepton pair;

ii) the four independent rank-reducing shifts that produce the 4
out of the 16 in each family (the third family corresponds to a
sector given by the product of projections, therefore it is not the
result of independent operations);

iii) the two shifts along the transverse space-time coordinates. No-
tice that there is no single string orbifold in which all these ope-
rations act at the same time: the two shifts on the space-time
are applied to different constructions. Nevertheless, the spec-
trum is produced by their stapling, and therefore is the result of
the combined action of the two operations.
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This makes in total seven projections. This means that the logarith-
mic volume of a broken SU(2) factor is 1/7 of the volume of the initial
symmetry of the matter sector. The overall volume of the matter sec-
tor is however not the entire volume of space, but just a fraction of it.
Space-time is in fact effectively doubly-shifted. The Z2 shift along the
space coordinate halves in fact the space (in the logarithmic picture
it produces a factor 1/2, which, when pulled back, i.e. exponentia-
ted, to the physical coordinates produces a square-root contraction of
space, R →

√
R). But the matter sector is produced as the staple of

two main orbifold configurations: the series of orbifolds with twisted
sectors, that in section 4.1.1.4 we have indicated as “t”-sectors (the en-
tire family of (t, t, t), (t, t, s) and (t, s, s) orbifolds, which descend from
the N4 = 2 orbifold with twisted sector, t) and the orbifold without
twisted sectors (the (s, s, s) orbifold, descending from the N4 = 2, “s”
orbifold, in which the twist is associated to a shift along an internal
coordinate). The phase space of the matter sector is therefore hal-
ved already at the N4 = 2 level. When stapled, the two configurations
give rise to a massive matter sector stapled onto a massive ground (the
(s, s, s) orbifold), which gives a 1

2 lnR mass contribution (i.e. a 1/
√
R

mass factor) common to all matter states. The SU(2) projections dif-
ferentiating the various matter states split therefore 1/2 of 1/2 of the
whole space, producing a series of masses that range from just above
1/R1/4 (that is, 1

2(s) +
1
2
1
7(t)) to almost 1/R1/2 (that is, 1

2(s) +
1
2
7
7(t)),

i.e., from just above 1
2 [

1
2(lnR)](s) to

1
2[

1
2(lnR)](s) +

1
2[

7
7
1
2(lnR)](t). The

beta-function coefficient of SU(2) is then 1
7 of 1

4 of the volume co-
efficient of the whole space: each SU(2) has therefore a logarithmic
volume:

αSU(2)|log = −βSU(2) lnR , (4.2.9)

with:

βSU(2) =
1

7
× 1

2
× 1

2
=

1

28
. (4.2.10)

The coupling of SU(2) is therefore:

αSU(2) = T − 1
28 , (4.2.11)
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where T = R is the age of the universe. Using the value of the age
of the universe given in appendix (eq. A.1), we obtain that, at the
present time, α−1SU(2) ∼ 147. If, to be more precise, we use the age of

the universe suggested by the agreement with neutron mass, eq. 4.3.28
(i.e. ∼ 5.038816199× 1060M−1P , see appendix), we obtain:

α−1SU(2) ∼ 147.2 (147.211014) . (4.2.12)

4.2.1.2 The U(1)γ coupling

We have determined the coupling of the symmetry SU(2) from its
volume in the phase space, by counting the projections that produce
a factorization into SU(2) factors. For this, we did not need to think
of SU(2) as of a gauge symmetry. For instance, the factorization of
the matter spectrum into three families does not explicitly derive from
the breaking of a larger gauge symmetry rotating all the matter states:
in the orbifold construction, as soon as extra families show up, they
appear as already separated, with their own internal gauge symmetry
that replicates the one of the first family. On the other hand, as long
as all these states are massless, it is legitimate to think that a higher
symmetry should be at work. The orbifold construction represents
a phase in which the extra gauge bosons are already projected out
from the spectrum. Nonetheless, it turns out useful to think of the
SU(2) module of the pattern of symmetry breaking as deriving from
the breaking of a larger symmetry, in which all the SU(2) factors are
embedded. This allows us to obtain the electromagnetic and weak
couplings, explicitly corresponding the one to an unbroken, the other
to a broken, gauge symmetry, by comparison with the volume of the
SU(2), thought of as deriving from the same overall gauge symmetry.
We can obtain the coupling of U(1)γ by determining the ratio of the
U(1)γ and SU(2) beta-function coefficients by counting the number of
matter states and gauge bosons concerned by the two symmetries. In
this way, we don’t need to determine the absolute fraction of a group
factor within the full symmetry group. The higher is the amount of
matter states which are acted on by the symmetry group, the higher
is its volume of occupation in the phase space. On the other hand,
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Figure 4.3: Of the four particles involved in the interaction, only
three have independent momenta, because the gauge boson
“transfers” the condition on the momentum from particles
1 and 2 to particles 3 and 4, imposing p̂1 + p̂2 = p̂3 + p̂4
through the δ(p̂) functions at the interaction’s vertices.

gauge bosons act as constraints that reduce the amount of degrees of
freedom in the phase space of the matter states: if we have N matter
states related by a symmetry carried on by M bosons, N −M matter
states have a four-momentum which is not independent, because it is
related, through the interaction propagated by a boson, to the one
of another matter state. The situation is illustrated in figure 4.3 for
the simple case of four particles and one boson, but it can be easily
generalized. The beta-function coefficients depend therefore linearly
on N −M :

bG = const× (N −M) . (4.2.13)

For N =M the beta-function coefficient vanishes. In this framework,
since the expressions of the couplings are valid at any scale, therefore
up to the Planck scale, this means that the coupling is always 1, at
any scale. Indeed, N = M means that there are as many particles
as constraints: there are therefore no free degrees of freedom and
the phase space volume collapses to one 12. In the case of SU(2), the

12In the logarithmic picture the constructions in which the weakly coupled gauge
group appears as perturbative are effectively supersymmetric, with N4 = 2 ex-
tended supersymmetry. The logarithmic picture is in fact obtained through an
artificial decompactification of the coupling of the theory. As seen from the
logarithmic picture, the beta-function exponent is a N4 = 2 beta function co-
efficient. In this case, expression 4.2.13 corresponds to b = T (R) − C(G).
An equal number of matter states and gauge bosons, transforming in the same
representation, corresponds to an effective N4 = 4 restoration, a situation of
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coefficient has been determined by counting the amount of projections
(section 4.2.1.1). This computation already accounts for the factor
(N−M), because the projections uniquely determine also the number
of states. In order to derive the coefficient of U(1)γ, we just need to
consider the ratio to the one of SU(2):

bU(1)γ

bSU(2)
=

(N −M)U(1)γ

(N −M)SU(2)
. (4.2.14)

When counting N and M we must consider all the states as mass-
less (mass gaps are determined as functions of volumes of symme-
tries. In first approximation we start therefore by considering all the
states massless). What enters in the computation of the correspond-
ing beta-function coefficient is therefore the volume of a symmetry
as computed by considering all the degrees of freedom as referred to
massless states. The beta-function coefficient of U(1)γ is proportional
to: 3(families) × 2(SU(2)doublets) × (1 + 3)(leptons + quarks) ×
2(left + right chirality) [ = 48] − 1 (gauge boson) = 47. Notice that,
in the counting, we have considered that all the matter states are
charged under U(1)γ. Indeed, three states, the three neutrinos, are
uncharged. However, the electromagnetic charge is simply “shifted”
from the central value (12,−

1
2), but the traceless condition is preser-

ved. As a result, the charge is only “rearranged” among the states:
some states result more charged, some less. In total, the strength
of the renormalization is the same as with a traceless U(1) with a
charge equally distributed among all the states. This is true in first
approximation, when all masses are considered vanishing.

The beta-function coefficient of SU(2) is proportional to 48 (the
same effective number of states as for U(1)γ) minus 3 (the number of
gauge bosons), i.e. 45, where the coefficient of proportionality is the

non-renormalization, with vanishing beta-function exponent.
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same as for U(1)γ
13. The ratio of the two coefficients is therefore:

bU(1)γ

bSU(2)
=

47

45
. (4.2.15)

Using 4.2.11 and 4.2.15, and the scale μ = T ∼ 5.038816199 ×
1060M−1P , the present age of the universe 4.3.28, adjusted on the neu-
tron mass, we get:

α−1γ ∼ 183.777867 . (4.2.16)

This has to be considered as a “bare” value of the coupling, not an
effective coupling in the field theory sense. We will discuss in sec-
tion 4.3.3 how this value should be “run back” to obtain the effective
coupling to be compared with the value experimentally measured at
a certain scale.

4.2.1.3 The SU(2)W coupling

The strength of the SU(2)W = SU(2)L coupling results from the su-
perposition of the various situations in which this interaction appears.
As we have seen in section 4.2.1.1, the configuration of minimal sym-
metry results from the superposition of a geometry in which survives a
chiral SU(2) symmetry, that we identify with SU(2)L, and a geometry
in which this symmetry is absent and the surviving matter degrees of
freedom transform in a 2 representation which is transverse to the 2L.
The beta-function coefficient of SU(2) was determined by considering
the matter space as effectively double-shifted. In the case of the weak

13There is here a subtlety: the SU(2) we are here considering corresponds to the
smallest SU(2) factor, as resulting from the maximal amount of symmetry brea-
king. It is therefore basically equivalent to SU(2)L, were not for the fact that the
phase space volume of SU(2)L is enhanced by the fact that it picks a contribu-
tion also in the massive, broken-symmetry case, whereas the SU(2) we are here
considering refers only to massless states. For what matters U(1)γ , it certainly
rotates all the states, i.e. both left and right movers of any matter states, but,
owing to the mass lift of these states, the degrees of freedom of left and right
movers are paired, so that they effectively feel the same phase space volume re-
duction as in the case of SU(2). For practical purposes, it is therefore equivalent
to consider the spectrum as massless in both the SU(2) and U(1)γ case, and in
the counting of matter degrees of freedom consider also SU(2) as rotating the
full spectrum of matter states.
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coupling, the beta-function coefficient will result to be a bit higher, be-
cause in this case we consider also the phase of massive matter states
and gauge bosons. In our scenario, we don’t have a Higgs mechanism of
spontaneous symmetry breaking. There are therefore no extra states
enabling us to formally maintain the same number of states as in a
massless situation, and work as everything was massless, by referring
the introduction of masses to a second order effect, through the in-
teraction with the Higgs field. The only thing we must do here is to
look at the phase space, and compare the situation without and with
masses. When the 2L is broken, we observe an effective halving of the
amount of degrees of freedom charged under SU(2)L. Since SU(2)L
rotates doublets, this means that as a symmetry SU(2)L is broken.
This on the other hand is precisely what we expect to observe. A
pure counting of degrees of freedom tells us that the beta-function
coefficient, given as the average of the two situations, is therefore:

bSU(2)L =
1

2

(
bSU(2)L|unbroken + bSU(2)L|broken

)
=

1

2

(
(1) (unbroken) +

(
1

2

)
(broken)

)
× bSU(2) . (4.2.17)

Inserting the value 4.2.10 of bSU(2) we obtain:

βSU(2)W =
1

2

(
1 +

1

2

)
× 1

28
. (4.2.18)

The present-day value of the inverse of the SU(2)W coupling is there-
fore:

α−1W ≈ T −(βSU(2)W )
0 ∼ 42.26 , (4.2.19)

where we have used the estimate of the age of the universe given in
the appendix, expression A.1. The value 4.2.19 is roughly a factor
4.4 smaller than the inverse electromagnetic coupling, given in 4.2.16.
Also this number has to be considered a “bare” value, to be corrected
in the way we will discuss in section 4.3.3.
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4.2.1.4 The strong coupling

Expression 4.2.13 holds only as long as the gauge interaction is weakly
coupled. This means that we cannot use the difference between num-
ber of matter states and number of gauge bosons as a discriminant
in order to say whether a given gauge group is confining or not. As
we have seen, N − M corresponds to an ordinary concept of gauge
beta function coefficient only in an effective N4 = 2 representation of
physics, where this reflects the b = T (R) − C(G) expression of the
beta-function coefficient. If blindly applied, this computation would
imply that SU(3)c is not strongly coupled. Nevertheless, an inves-
tigation of the N4 = 0 gauge beta function tells us that SU(3)c is
confining. But what does it really mean “confining”? Experimental
investigations say that at the scale of some typical quark process, for
instance the Z-boson mass in a e+e− → 4J event, αs(MZ) = 0.119
[63]. This means that the coupling is definitely stronger than the
electromagnetic coupling, therefore justifying the fact that the proton
“holds up” despite the repulsive electromagnetic force acting among
its quarks, yet it has anyway a value lower than one, therefore not
really what in our theoretical framework we call “strong coupling”.
Indeed, it is weak enough to allow obtaining a glimpse into the par-
ton structure, because the quarks are not so tightly bound to appear
like just one single, elementary state. In our derivation of the set of
minimal symmetry configurations, we have seen that the quark sec-
tor feels an internal force which is at the strong coupling, i.e. it has
a coupling strength larger than 1. As seen from a picture in which
U(1)γ and SU(2)W are at the weak coupling, the internal symmetry
appears as a symmetry relating three families of three quark colours.
Therefore, strictly speaking an SU(9) symmetry, which leads to the
existence not only of colour singlets formed with quarks belonging to
one single family, but also with quarks belonging to different families.
Of this type are for instance the D-mesons, formed by coupling charm
and down quarks. However, the splitting into three matter sectors
does not necessarily imply that any single sector is a replica with its
own gauge bosons: any time we invert the game by going to an S-dual
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picture, where we switch on the gauge part as a weakly coupled gauge
group of which we explicitly see the bosons as massless string states
(e.g. the heterotic picture) we see only three matter sectors all charged
under one single gauge group. Therefore, either i) we see the sector
as strongly coupled, a situation in which it does not make any sense
to speak of gauge bosons, because there are no gauge bosons at all
being the group at confinement, or ii) we have a perturbative realiza-
tion in which we explicitly see gauge bosons, but in this case there is
one single gauge group sector, whose index is beared by all the matter
states. In this second case, could we see the internal group as expli-
citly realized, we would see an SU(3) index beared by the three colour
states of each family. The real physical situation is however the one of
a basic strong coupling, in which, owing to compactness of space-time,
T-duality, although “entropically” broken, plays a fundamental role.
The ground strength of the coupling of the theory is set by the gra-
vitational coupling, which in our theoretical framework is set to 1, as
the unit in which everything else is measured. Its decoupling is only
an artifact introduced in order to investigate the theory content in a
flat space (logarithmic picture), where gravity, and the local geometry
of space-time, is factored-out, and we work in a flat space. Indeed,
all the other couplings depend on the coordinates of space-time (in
practice, on the age of the universe), and strong and weak coupling
correspond to situations which are T-dual, where the turning point is
precisely the gravitational coupling. It is precisely the non-complete
disappearance of T-duality what allows to speak in terms of minimal
length also in the description on the continuum, even after symmetry
has been broken by the stapling of all the possible geometries. This
on the other hand implies that physics always results from the sta-
pling of T-dual (or, to better say, S-dual) strong and weak coupling
phases. In the case of the colour interaction, this means that, under
certain conditions, we can detect certain properties that we can in-
terpret as belonging to a weak coupling phase (i.e. αSU(3) < 1). The
strength of the coupling for the weak coupling phase is derived as in
section 4.2.1.2, evaluating the volume in the phase space by counting
the number of matter states and gauge bosons, N − M . We have
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N = 3 (quark colours) × 3 (families) × 2 (SU(2)W indices) × 2 (left
+ right chirality) = 36, and M = 32 − 1 = 8 gauge bosons. There-
fore, N −M = 28. The strength of the SU(3) coupling is therefore
computed form that of SU(2) as in 4.2.14:

bSU(3)c

bSU(2)
=

28

45
. (4.2.20)

This implies:

αT
SU(3) = T − 1

45 , (4.2.21)

where we have indicated with “T” the fact that we are considering the
T-, or more precisely the S-, dual of the coupling. Inserting the value
of the age of the universe, expression A.1, we obtain:

αT
SU(3) ∼ 0.0448 . (4.2.22)

4.2.1.5 Elementary masses

We will proceed now to a determination of the mass ratios, as func-
tions of ratios of symmetry volumes. Since these relations hold at any
scale, we may think of working at a time scale close to the Planck
scale, and map to a logarithmic picture, in which all the couplings
are very small (remember that they go to 1 to ward the Planck scale.
Their logarithm therefore vanishes). This procedure will give us a first
estimate of the mass relations, as functions of just one coupling, the
SU(2) coupling. These relations produce reasonable mass values for
the stable particles, whereas for the unstable, and heavier, ones, the
phase space volumes are more strongly affected by the superposition
with other energy scales, and, in order to produce values comparable
with experiments, a more detailed knowledge of the dynamics and
the experimental conditions is required. The actual computation of
current mass values will be considered in section 4.3.

According to what discussed in section 4.1.1.4, a pure SU(2) sym-
metry factor is the distance separating the first from the second neu-
trino: it is in fact a simple passage from a certain amount of degrees of
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freedom to exactly twice as much, while keeping fixed the type of in-
teraction the particles are sensitive to. Moreover, it involves the most
“neutral”, i.e. less interacting, particles of the spectrum. In particu-
lar, these particles do not feel the strong interaction. As the volume
of a particle in the phase space is related to the amount of interactions
the particle is involved in, we expect the first two neutrinos to be also
the least affected ones by perturbations and corrections due to an im-
precise evaluation of the whole dynamics. Working in the logarithmic
picture, more than in ratios we are interested in differences. Close to
the Planck scale, all interactions are strong, and the spectrum tends to
arrange into compounds neutral for the various interactions. Since we
investigate the states in a logarithmic representation, we treat them
nevertheless as free states. However, of interest for us is the hierarchy
underlying the formation of neutral compounds. As the electroma-
gnetic interaction is stronger than the weak interaction, the spectrum
organizes in a way to first separate into electrically neutral states, and
then it arranges into SU(2)W doublets. This means in particular that
all the neutrinos are lighter than any other particle, and constitute the
first three lightest steps in the mass hierarchy. From expression 4.1.8
we see that the distance between the first neutrino (the lightest, νe)
and the ground momentum is 5

3, the distance from the second (νμ)

to the first neutrino is 3
2, and the distance from the third (ντ) to the

second is 1. Let us call these distances δ(1), δ(2) and δ(3) respectively,
and α the strength of the SU(2) coupling. δ(2) corresponds then to
α−1:

δ(1) = α−1×
5
3
2
3 ;

δ(2) = α−1 ; (4.2.23)

δ(3) = α−1×
2
3 ;

In order to simplify the following discussion, let us introduce the no-
tation δ(2) = lnα−1 ≡ ln δ. We can therefore write the following
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relations, holding in the logarithmic picture:

mνe − lnM0 ≡ δ(1) =
10

9
ln δ ;

mνμ −mνe ≡ δ(2) = ln δ ; (4.2.24)

mντ −mνμ ≡ δ(3) =
2

3
ln δ ,

where M0 = 1/2
√
T . Physical masses are related therefore through

the following ratios:

mνe

M0
= δ

10
9 , (4.2.25)

mνμ

mνe

= δ , (4.2.26)

mντ

mνμ

= δ
2
3 . (4.2.27)

Let us now consider the electrically charged matter states. Each fa-
mily contains a lepton and quarks, with electrical charges that make
any family overall electrically neutral in itself. That is, the charged
counterpart of each family is overall neutral. Differently to the field
theoretical approach, our scenario, being defined for any value of the
age of the universe, is valid at any energy scale till the Planck scale.
We can therefore consider the situation toward the Planck scale, where
also the electromagnetic interaction is strong. In this regime, the char-
ged states of each family glue together to form an electrically neutral
compound. From the point of view of the phase space, this compound
behaves therefore similarly to the corresponding neutrino.

Indeed, behaving effectively as a single particle, we expect that the
sets of the charged particles of each family stay in the same relative
ratios (or logarithmic distance, if one prefers) as the inter-family ratios
(distances) of neutrinos. Do they have also the same mass? Not at
all, because of the higher amount of “internal” degrees of freedom,
that come into play as soon as, lowering the energy scale, they get
“unfrozen”, freed up into independent degrees of freedom, that occupy
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therefore a larger volume in the phase space. If we indicate with
V(qup, qdown, ) the volume of the charged part of each family, we expect
therefore:

V(u, d, e) ∼ Δ
10
9 ; (4.2.28)

V(c, s, μ) ∼ Δ1+ 10
9 ; (4.2.29)

V(t, b, τ) ∼ Δ
2
3+1+ 10

9 . (4.2.30)

In this case, the ground mass factor is the volume of the neutrino sec-
tor, i.e. the mass of the heaviest neutrino, mντ . The fact that toward
the Planck scale these states are effectively at the strong electroma-
gnetic coupling, and therefore exist only as singlets, implies in the
logarithmic picture a reduction of their symmetry span by a factor 1

3.
Once pulled back to the physical picture, this results in a third-root
power contraction of the phase space volume of the charged part of
each family.

Furthermore, differently from what happens for the leptons, in the
case of quarks the αSU(2) factor between the top and bottom quark
does not separate the masses of the single quarks, but singlets of the
confining SU(3) symmetry. Depending on whether the latter are for-
med by pairing two quarks (quark-antiquark pair, like in the mesons)
or three quarks, like in the proton or the neutron, we expect therefore
a normalization factor of about 1/2 or 1/3. Differently from what
happens for the other symmetry groups, in the logarithmic picture
the confining symmetry is not perturbatively realized. We expect the-
refore the normalization coefficients to not appear at the logarithmic
level, to be promoted to exponents of the age of the universe, but to
be true multiplicative normalization factors.

In the case of the quarks of the first family, the so called experi-
mental values are quantities derived rather indirectly. Contrary to the
second and third family, where the mass values are obtained from the
mass of the unstable particles they form basically by pairing two by
two (mesons), in this case we only detect particles (pions, and ha-
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drons) strongly affected by the neutron mass scale. We give therefore
here the expression for the “bare” quark mass, without introducing
normalization factors, because the contact with experiments does not
occur at the bare quark level. We expect the up-to-down mass relation
to be:

max [mu, md] ∼ δ
1
3 ×min [mu, md] . (4.2.31)

Here we have indicated in brackets the heavier and the lighter mass
of the up and down quark pair. In principle the first should be the up
quark mass, and the second the down quark mass, however, as we will
explain in section 4.3.2.3, for the first quark generation they turn out
to be exchanged.

The mass gap between quarks and leptons is the consequence of the
breaking of the 4 of each family into 1⊕ 3. This separates the phase
space into two parts of unequal volumes. Counting the weights in the
logarithmic picture, we see that the weight of the 1 is one-half of the 2
occurring when the 4 of SU(4) is broken in the 2+2 of SU(2)×SU(2).
The distance between the two parts is one-half of the logarithmic
volume of SU(2). Therefore, we expect the “up” of the 1 to lie a√
δ =

√
αSU(2) factor below the “down” of the 3. Taking then the

third root of the broken SU(2) volume fraction, as required by fixing
the normalization of volumes at the strong electroweak coupling (at
the Planck scale), we obtain the following separation factor between
the lighter quark and the electron:

min [mu, md] ∼
√
δ

1
3 me , (4.2.32)

where, by analogy with 4.2.25,

me ∼ δ
10
9 mντ . (4.2.33)

Putting 4.2.31, 4.2.32 and 4.2.33 together, we obtain:

Ṽ(u, d, e) ≡ V(u, d, e) ∼ δ
1
3

√
δ

1
3 δ

10
9 ∼ Δ

10
9 . (4.2.34)

From these relations we derive then the corresponding factors for the
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second and third family:

mμ ∼ δ me , (4.2.35)

mτ ∼ δ
2
3 mμ . (4.2.36)

Similarly, we have:

ms ∼ Ns

(√
δ

1
3

) 9
10(1+

10
9 )
mμ , (4.2.37)

mc ∼ Nc

(
δ

1
3

) 9
10(1+

10
9 )
ms , (4.2.38)

mb ∼ Nb (
√
δ

1
3 )

9
10×

2
3

mτ , (4.2.39)

mt ∼ Nt (δ
1
3 )

9
10×

2
3mb . (4.2.40)

Here we introduced the normalization coefficients Ns, Nc, Nb and Nt

in order to account for the fact that the values we want compute refer
to colour singlets. For the charm, bottom and top quarks the mostly
observed states are unstable particles formed by a quark-antiquark
pair, therefore the coefficient Ni, i = c, b, t is expected to be 1

2 . In
the case of the s quark, it seems that, besides the K mesons, also the
Λ and Σ baryons play a relevant role, so that, as a matter of fact, as
we will see in section 4.3.2, things work if we set Ns =

1
3
. A detailed

prediction of these coefficients would require a complete analysis of
the interactions of the corresponding quark, in order to see, in the
light of this theoretical framework, what are the relative weights of
the various contributions to the staple of configurations that build up
the full phase space of each particle.

The value of the SU(2) coupling, δ, must be always intended as run
to the appropriate energy scale. This means that it is not constant
through all the mass hierarchy. The reason of this behaviour, which by
the way is common also to the weak and electromagnetic coupling, is

145



4 The spectrum of the universe of codes

the following. We measure group volumes within the mass spectrum.
However, as we just discussed, the overall mass is not just given by the
position of a particle in the hierarchy of broken symmetries within the
matter sector, but receives a contribution from the ground momentum.
In logarithmic terms, whenever a mass distance of two particles, 1 and
2, related by an SU(2) relation, can be written as Δm = ln δ, the
actual value of δ is computed by considering the volume of symmetry
breaking as measured in terms of the overall volume. Namely:

m2 = ln (δ/V ) + m
(0)
1 + lnV , (4.2.41)

where V is the overall ground volume, that includes the ground mo-
mentum and the volume of all the particles lighter than particle 1. In-

deed, we have here indicated withm
(0)
1 the mass distance of the lighter

particle to the next one in the step-down mass hierarchy. When we
consider the whole value of a mass, we must “normalize” the value of
the coupling. The higher is the volume V , i.e. the heavier is the ligh-
ter mass of the pair, the lower is the distance (remember that δ > 1,
being the inverse of a weak coupling). Since we are going to construct
the tower of masses step by step starting from the lightest one, by
considering distances investigated in the logarithmic picture, what we
are building is a series of higher levels in the mass hierarchy in which
at any step the coupling is corrected logarithmically. The number gi-
ven in 4.2.12 is therefore the value of the inverse of the coupling at the
M0 scale introduced on page 142. The value of δ to be inserted in the
second-to-first neutrino mass ratio is not the inverse of the “natural”
value of the SU(2) coupling, but the value linearly run from M0 to
the neutrino scale, and so on.
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4.3 Present-time values of masses and couplings

4.3.1 Bare masses

Now that we have at hand the value of the SU(2) coupling we can
proceed to an explicit evaluation of the masses of the elementary
particles, as they can be computed using the mass formulae given
in section 4.2.1.5. These can be considered the “bare” values. A
comparison with the experimental results must take into account the
conditions under which a certain mass is operatively defined. In parti-
cular, unstable particles (in practice all apart from the particles of the
first family, of which however the only relevant case is the electron,
because the up and down quark masses are only indirectly measu-
rable) turn out to be strongly affected by the superposition with the
stable scale, m3/10, that corresponds to the proton/neutron mass scale
(see section 4.3.6). We will proceed to the evaluation according to
section 4.2.1.5, by inserting the value of δ, the inverse of the SU(2)
coupling, recalculated at the appropriate scale through a linear run-
ning in the logarithmic picture (a linear running of the logarithm of
the coupling), obtained by imposing that at the Planck scale the cou-

pling is zero, and at the mass scale M0 = 1
2T −

1
2 it corresponds to

the value 4.2.12. We will assume that the coupling renormalizes in
correspondence of each SU(2) step. Therefore, we will use the value
of δ at the scale M0 in order to compute the mass of the first neu-
trino, then we will use the value of δ recalculated at the scale of the
first neutrino in order to obtain the mass of the second. For the third
we will not recalculate the coupling, because the third generation is
not produced by an independent SU(2)-breaking projection, but is
generated by those that give origin to the first and the second matter
generation. Similar considerations apply also to the hierarchy of the
charged particles.
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4.3.2 Mass values

4.3.2.1 Neutrinos

The first masses we calculate with this method are those of the three
neutrinos. Using the value of the present-day age of the universe
derived from the neutron mass, expression 4.3.28, from 4.2.24 and
4.2.25 we obtain:

M0 = 2.23× 10−31MP = 2.72× 10−12GeV . (4.3.1)

From this, according to 4.2.24 and 4.2.25–4.2.27, we compute:

mνe = 1.40 eV ,

mνμ = 205.25 eV , (4.3.2)

mντ = 5.72KeV .

These values agree with the experimental indications of possible neu-
trino oscillation effects at the electronvolt scale.

4.3.2.2 Electron

The mass of the electron is then derived from 4.2.33 by using the value
of δ renormalized at the mνμ mass scale. We obtain:

me = 0.506MeV . (4.3.3)

In order to compare this value with the experimental one, we must
reproduce the conditions under which this quantity is measured. The
electron mass is derived from the Rydberg constant, entering the ex-
pression of the energy levels of the atomic emission spectra. The elec-
tron which is measured is not therefore a truly free electron but an or-
biting electron, which interacts with the proton in an electron+proton
+neutron system. Since the interaction with the proton is of electro-
magnetic type, its strength is set by the electromagnetic coupling αγ.
We can expect that the volume occupied in the phase space is set by
the fraction of the proton volume involved in the interaction with the
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electron, multiplied by the fraction of volume occupied by the electron
as compared to the proton. In practice, proportional to the coupling
times the volume of the electron times the volume of the proton, mea-
sured in units of the volume of the proton:

ΔE ∼ αγ ×mp ×
me

mp
∼ αγme . (4.3.4)

This can be viewed as a “quantum gravity” correction to the electron
mass. Being measured through atomic spectra means in fact in par-
ticular that the electron lives in a space curved by the overall energy
of the atomic system. The correction to the ground energy of the
electron is expected to be given by the gradient of energy:

ΔE ≈ |∇E| , (4.3.5)

In a logarithmic picture, this becomes:

E −→ E|0=m + |∇ lnE| , (4.3.6)

where it is intended that dimensions are adjusted by appropriate po-
wers of c and �. This is also the kind of correction considered in
ref. [14] (see chapter 7), that modifies the effective value of �. The
correction is higher the higher is the curvature of space, and vanishes
in a flat space. Although strange it may look, this correction term is
of the form:

ΔE ∼ 1

(c)Δt
∼ 1

Δx
× E

E
. (4.3.7)

It has therefore the appropriate form in order to represent a quantum
correction to the energy. Now, what is the gradient of energy in an
atom, in particular a hydrogen atom? The total energy is basically
the proton plus neutron mass, which is concentrated in a space region
of Bohr radius. Therefore, in units for which � = c = 1:

∇ lnE = ∂r lnE ∼
1

E
× E

rBohr
∼ 1

mp + mn
× (mp + mnn)×αγme .

(4.3.8)
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This implies that the electron mass is corrected to:

me = me + αγme , (4.3.9)

where αγ must be run to the center-of-mass scale of the hydrogen atom
(see section 4.3.3 for a discussion of the running). We obtain therefore
expression 4.3.4. Taking this correction into account, we obtain:

me ∼ 0.5107MeV . (4.3.10)

The electron interacts then with the proton and the neutron also at
higher orders, through the SU(2)W weak coupling. These are however
very minor corrections that do not change the value of the mass at de-
gree of approximation of expression 4.3.10. The official value reported
in the literature is:

me|experimental ∼ 0.511 + O(10−4) MeV . (4.3.11)

At this stage, it does not make sense to look for a better matching of
our predictions with this value, because experimental measurements
are performed in an indirect way, and depend on the theoretical fra-
mework within which the fine corrections are computed. A true com-
parison with experiments going beyond a first approximation would
require implementing and interpreting the whole measurement process
within our theoretical scheme.

4.3.2.3 Up and down quarks

Continuing along the lines of section 4.2.1.5, from 4.2.31 and 4.2.32
we obtain:

min[mu, md] = 1.108MeV ; (4.3.12)

max[mu, md] = 5.305MeV . (4.3.13)

The reason why we did not yet specify which one of the quarks we are
considering is due to the fact that, although in principle we should find
as lighter particle the quark with the lowest electric charge, namely

150
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the down quark, the role of up and down quark are exchanged. The
explanation has to do with the way in our framework the symmetry
breaking is realized. At low energy, the SU(2)W symmetry appears
as a broken gauge symmetry, with the breaking tuned by a parame-
ter of the order of a negative power of the age of the universe. As
we will see in section 4.3.5, the SU(2)W gauge boson masses scale
in such a way that T → ∞ is a limit of approximate restoration
of the SU(2)W symmetry. Moreover, remember that the weak force
in itself is stronger than the electromagnetic force: αW > αγ (it is
called weak because for low transferred momenta, p/MW 
 1, effec-
tive scattering/decay amplitudes are suppressed by the boson mass:
αeff
W ≈ αW/MW ). Therefore the “hierarchy” of matter is prioritarily

determined by the SU(2)W charge, more than by the electric charge.
As a consequence, the matter spectrum can be thought of as being
made of two subspaces, the “up” and the “down” subspace, and the
trace of the electric charge can be viewed as:

< Qe.m. >=
∑
	,q

< up|Qe.m.|up > +
∑
	,q

< down|Qe.m.|down > ,

(4.3.14)
where

∑
	,q indicates the sum over leptons and quarks. The condi-

tion of approximate restoration of the SU(2)W symmetry, and the
dominance of the weak force with respect to the electromagnetic one,
require that the two terms of the r.h.s. of 4.3.14 give an equal contri-
bution to the total mean value of the electric charge. Otherwise, this
would explicitly break the SU(2)W invariance. This imposes that the
trace of the electric charge has to vanish separately on the “up” and
“down” multiplets. In practice, both of them must vanish. For the
validity of this argument it is essential that the weak force ends up
by dominating the more and more over the electric one, and that the
symmetry is restored at infinitely extended space-time; therefore, the
full space must be essentially thought of being as separated in two
SU(2)W eigenspaces. Compatibility of the theory at any finite time
with the situation at the limit tells us that:

tr (ν, d) = 0 . (4.3.15)
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Since the ν charge vanishes, we have that:

tr (d) = 0 . (4.3.16)

This is only possible if, for one family, the roles of the up and down
quarks, for what matters the electric charge, are exchanged, so that
we have tr (d) = 3 ×

(
2
3
− 1

3
− 1

3

)
= 0. Correspondingly, the trace

of the “ups” is also vanishing:

tr (e, μ, τ, u) = −1 − 1 − 1 + 3×
(
−1
3
+

2

3
+

2

3

)
= 0 . (4.3.17)

Therefore, in one of the three quark families the role of up and down
is interchanged: the quark with electric charge +2/3 is indeed the
“down”, while the one with charge -1/3 is the “up”. In the ordinary
field theory approach, this argument does not apply because the sym-
metry remains broken also at infinitely extended space-time 14. Simple
entropy considerations allow us to identify in which family the flip oc-
curs. Let’s consider the SU(3)c-singlet made out of the three quarks,
one per each family, with higher electric charge, and the one made in
a similar way out of the three quarks with the lower electric charge.
Clearly, the first one is the most interacting singlet we can form by
picking one quark from each family, and conversely the other one is
the less interacting one we can form. The first must therefore also
be the most massive out of all the possible SU(3)-singlets formed by
one quark per each family, while the second one must be the lightest.
The only possibility we have to achieve this condition is when the flip
between charge +2/3 and -1/3 quarks occurs in the lightest family,
i.e., for the quarks we usually call the up quark and the down quark.
Therefore, approximately the value of the mass of the up quark is the
one we computed for the lightest “down” quark state, and conversely
the mass of the down quark is the one we assigned to the lightest “up”:

mu = 1.108MeV ; (4.3.18)

md = 5.305MeV . (4.3.19)

14Notice that the usual charge assignment breaks the SU(2) symmetry explicitly.
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Possible further minor corrections, that we are not able to estimate
here, are to be expected as a consequence of the fact that now the
lighter quark has a higher absolute value of the electric charge, and
therefore a larger volume in the phase space, whereas the upper quark
has a lower absolute value. The up quark could possibly be slightly
heavier, and the down quark slightly lighter.

4.3.2.4 The charged particles of the second and third family

Passing to the second family, we first compute the muon mass. From
4.2.35, with a value of δ recalculated at the electron mass scale, we
obtain:

mμ = 55.6MeV . (4.3.20)

Analogously, by recalculating δ at themμ scale, we proceed to compute
the strange quark mass from 4.2.37, obtaining:

ms = 94.4MeV . (4.3.21)

Recalculating δ at the strange quark mass scale, from 4.2.38 we obtain
then:

mc = 1.22GeV . (4.3.22)

The experimental values are: mμ = 105.658MeV, ms ∼ 95 ± 5MeV
and mc ∼ 1.29+0.05

−0.11GeV. From 4.2.36, still using the value of δ eva-
luated at the electron mass scale, we calculate then:

mτ = 1.27GeV , (4.3.23)

and, by recalculating the value of δ at the mc mass scale,

mb = 5.32GeV , (4.3.24)

and

mt = 186GeV . (4.3.25)
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4.3.2.5 The neutron mass

Now that we know what the spectrum of elementary matter degrees of
freedom is, we are in a position to reconsider the neutral average scale
introduced in section 3.4. Toward the Planck scale, all interactions
tend to the strong coupling with the same strength. The only possible
state in the spectrum is therefore a compound neutral for all the three
forces. For the first generation, this can only be a compound of neu-
trino, electron, proton and neutron, and their charge conjugates. This
pattern is replicated in all the three families. However, as soon as we
depart from the Planck scale toward lower scales, heavier similar com-
pounds tend to decay to lighter states. The only really stable state is
therefore the one of the first family. Stability is here to be intended in
a temporal sense, i.e. when a large time interval is considered. Other-
wise, at the typical electro-weak scales, the components of this state
which are neutral for the colour force exist also as free states. On the
other hand, since any experimental measurement is performed during
a finite time interval, the physical measurements are an average both
over the staple of configurations at any time, and over the time dura-
tion of the experiment. As a consequence, the shorter is the mean life
of unstable particles, the more are their properties “blurred” by the
presence of this state.

Since electron and neutrino are very light as compared to its mass
scale, we must think that the dominant contribution is given by the
colour singlets, the proton and the neutron. The difference between
the two consists in an SU(2)W rotation, that, owing to the much
weaker strength of the coupling as compared to αs, is expected to not
affect that much the mass scale of the colour singlet. On the other
hand, we may also think that, as we approach the Planck scale, the
proton first tends to glue with the electron and neutrino, to form an
electromagnetic-neutral compound, and then this in turn glues to the
neutron to form a state neutral also under the SU(2)L interaction. In
first approximation, we can therefore assume that the mass scale of
the electromagnetic neutral compound (proton, electron, neutrino) is
close to the one of the neutron, and the mass obtained in Chapter 3
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(eq. 3.4.2) gives four times the mass of the neutron. Therefore:

mn �
1

4
< m > � 1

8
T − 3

10 . (4.3.26)

By inserting in 4.3.26 the current value for the age of the universe, as
obtained by extrapolating data of experimental observations within
the theoretical framework of Big Bang cosmology, we obtain a value
quite close to the neutron mass. Namely, from 4.3.26 and a central
value of the age of the universe ∼ 12.75 × 109 yrs, (∼ 5 × 1060M−1P ,
see appendix) we obtain:

mn ≈ 937MeV , (4.3.27)

quite in good agreement with the value experimentally measured,
939.56563 ± 0.00028MeV [64]. A more correct analysis would require
a new derivation of the value of the age of the universe completely wi-
thin our framework. On the other hand, within our theoretical scheme
one can reverse the argument, and take the mass of the neutron as the
most precise measurement of the age of the universe. In this case, we
obtain as its actual value:

T0 = 12.62028271 × 109 yr . (4.3.28)

The fact that our mass formula gives as average mass the mass of
the neutron is nicely in agreement with what we would expect from
a universe behaving as a black hole. According to the common as-
trophysical models, a black hole is in fact the step just following the
“neutron star” phase of a star at the end of its life. Our considerations
of above suggest that the universe can be roughly thought of as a kind
of neutron star at the point of transition to a black hole.

4.3.2.6 The proton mass

Proton and neutron differ by an SU(2)W rotation of the quarks. We
expect therefore that the main contribution to the mass difference
between the two is set by the mass difference of the up and down

155



4 The spectrum of the universe of codes

quarks. However, since in this case quarks are strongly coupled and
confined, their phase space volume is reduced as compared to that of
the free quarks, corresponding to the mass values 4.3.18, 4.3.19. From
4.3.18 and 4.3.19 we obtain a mass difference given by:

Δmu−d = 4.197MeV . (4.3.29)

If we think of contracting the phase space volume by a factor 1
3 , as

to be expected when we glue three quark degrees of freedom into a
singlet, we should expect an effective neutron-proton mass difference
given by one third of 4.3.29, namely:

mn −mp ∼ 1.399MeV . (4.3.30)

The mass difference experimentally observed is about:

(mn −mp)|(experimental) = 1.293MeV . (4.3.31)

If we run this value from the free quarks mass scale to the proton
mass scale, by assuming a linear running of masses in the logarithmic
picture as for the effective couplings we obtain:

(mn −mp)corr. ∼ 1.291MeV . (4.3.32)

We do not insist here on the exact computation of this value, for
which a better knowledge of the physical details would be necessary.
However, what we learn from this discussion is that the values we find
are in principle compatible with the experimental observations.

4.3.3 The effective electromagnetic coupling

The couplings αγ, αW and αs derived in section 4.2.1.1 and 4.2.1.2 and
4.2.1.4 run with time, and therefore with an energy scale: they are the
couplings at a specific age of the universe. The values we obtained do
not however correspond to the actual value of the physical coupling.
In order to obtain the latter, we must run them up to the appropriate
scale. In this section we consider the correction to the weak couplings.
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In the representation in which elementary particles are defined, namely
in the logarithmic picture, the effective gauge couplings are corrected
according to:

α−1i ≈ α−1i |0 + bi lnμ/μ0 , (4.3.33)

where bi are appropriate beta-function coefficients, and μ is the scale
of the process of interest. Since the couplings scale as powers of the
age/size of the universe, and therefore meet at 1 at the Planck scale, in
first approximation we can assume that, in the effective representation
of the physical configuration, couplings run logarithmically with an
effective beta-function such that, starting from their “bare” value at
the actual T −1/2 scale, they meet at zero at the Planck scale:

α−1i ≈ α−1i |0 + b
(eff.)
i lnμ/μ0 , (4.3.34)

with b
(eff.)
i such that:

b
(eff.)
i lnμ0 = α−1i |0 , (4.3.35)

where:

μ0 ∼
1

2
T − 1

2 , (4.3.36)

T being the age of the universe as fixed by the neutron formula 4.3.26.
The choice of the square root scale 4.3.36 as the starting scale is dic-
tated by the fact that this is the fundamental scale of matter states,
and their interactions.

Let’s consider the electromagnetic coupling. The value of αγ given
in section 4.2.1.2 must be considered as a bare value at the scale μ0.
The fine-structure constant, which for us is not really a constant, but
just the present-day value of this coupling, will correspond to the value
of αγ run from 4.2.16 at the scale 4.3.36 to the scale μγ at which this
coupling is experimentally measured. The coupling of the electron to
the proton is derived from the wavelength of the atomic spectra, in
particular hydrogen. The typical scale is therefore that of the center
of mass of the electron and the system of up and down quarks. This
is not really the mass scale of the proton itself, which is higher due to
the strong interaction of quarks, to which the electron is insensitive.
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If we take for μ a multiplicative mean of the electron, up and down
quark mass scale as computed in 4.3.10, 4.3.18 and 4.3.19, we obtain
as recalculated value of 4.2.16:

α−1γ : α−1γ |μ0
= 183.78 → α(0) −1

γ |me
≈ 132.9 ± 0.2 . (4.3.37)

The uncertainty is due to the approximation in the choice of the evalu-
ation scale, which is due to our ignorance of the details of the physical
system. The result 4.3.37 is definitely closer to the experimental value,
nevertheless still quite not right, being out for an amount higher than
the error of our approximations. The reason is that the value 4.3.37
has been calculated without taking into account the exchange of the
role of up and down quarks, as described in section 4.3.2.3. Modifying
the amount of electric charge of a particle results in a modification
of the phase space volumes, that, as a consequence of the arguments
discussed in section 4.3.2.3, in turn reflects in a different running of
the coupling along the mass scales. In order to estimate the order
of the correction, we can think that the up-down exchange implies a
shift in the mass scales of the order of the mass difference; the relative
correction to the coupling should be of the same order of the relative
correction of the mass scales:

Δα−1γ(
α
(M0)
γ

)−1 ∼ Δm

M0
, (4.3.38)

where Δm = md −mu. Lowering the mass of the positively charged
quark implies that the scale of the negatively charged lepton, the elec-
tron, is now closer to the scale of the quarks with the largest amount
of opposite electric charge. The negative charge is spread over a wider
range of mass scales (from the electron’s scale to the down mass scale,
which is now higher than the one of the up quark). As a consequence,
the electric interaction gets “screened”, or smoothed down, and the
coupling consequently lowered. The inverse coupling, α−1, is there-
fore enhanced. By considering the quark masses 4.3.18 and 4.3.19, we
obtain Δα−1 ∼ 4.12, and a corrected value of the inverse coupling:

α−1 (shift)γ = α−1γ + Δα−1γ ∼ 137 ± 0.2 . (4.3.39)
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It does not make much sense to require a better match with the expe-
rimental value of the fine-structure constant (we adopt this termino-
logy by convention, although in our theoretical framework this is not
a constant). Indeed, neither the electron mass nor the fine-structure
constant are directly measured: they are derived from the value of the
Rydberg constant, and the electron magnetic moment. Both these
quantities are expressed in terms of αγ and me, so that the relations
can be inverted and return the coupling and the mass. However, the
quantum gravity corrections, that, as we have seen, affect the value
of the mass, affect the value of the coupling too: quantum modifica-
tions of the geometry on the small scale reflect in the wavelengths of
the observed spectra, which turn therefore out to depend on the bare
parameters through modified functions. A detailed evaluation should
reconsider all these quantities within this theoretical framework.

We recall that in our framework the electric charge is time-dependent,
and 4.3.39 only corresponds to the present-day value of this parameter.
The rate of the time variation at present time can be easily derived
from the very definition. From 4.2.11 and 4.2.15 we obtain:

1

α

dα

d t
=

1

28
× 47

45
× 1

T . (4.3.40)

In one year, the expected relative variation is therefore of order ≈
3× 10−12. This is a rather small variation, however not so small when
compared to the supposed precision with which α is obtained. Indeed,
the most recent measurements give for its inverse a number with pre-
cisely 12 digits, a number whose variation could be observed by repea-
ting the measurement at a distance of some years. Since however a
fine experimental determination of α depends, through the theoretical
framework within which it is derived, on time-varying parameters such
as lepton masses etc..., it would not be an easy task to disentangle all
these effects to get the “pure α time-variation”. This kind of effects
can be better detected when expanded on a cosmological scale, as we
will discuss in section 5.4.0.1.
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4.3.4 The effective strong coupling

The colour coupling αs is a story apart. Our theoretical framework
is rather different from the field theoretical framework in which the
experimental value αs(MZ) cited in section 4.2.1.4 is obtained. The-
refore, it is rather difficult to compare results, especially when they
are obtained, as in this case, by interpolating and then running inputs
through renormalization equations. In our case, the strong coupling,
both in the “strong” and in the dual phase, go to one toward the
Planck scale, where all couplings join. The scaling properties are the-
refore rather different (as are also those of αW ). The interpretation
we give of this number is that, as long as the up and down quarks
are glued together into a proton or a neutron, although with a va-
rying strength, conceptually they cannot be treated as free particles,
not even in an approximated way. This implies that, as long as the
proton, or the neutron, hold up, no matter of what is the energy scale
at which the proton or the neutron are accelerated, the typical energy
to which the colour coupling must be referred to is the one set by the
rest energy of the proton, or neutron. Therefore, αs is not expected
to rescale. What does rescale is on the other hand the relative energy
scale distance between the center-of-mass energy of the experiment
and the rest energy of the neutron, which is related to what we called
the “stable” scale, m3/10. While close to this energy the stable scale
dominates in the phase space when a measurement is performed during
an extended time interval (as all experiments are), at higher energies
it is possible to observe also the T-dual phase, because its effects are
no more so heavily screened by the closeness to the stable scale. This
is what in our scenario explains while, although not appearing as free
particles, at higher energies it is nevertheless possible to get a glimpse
into the fact that proton and neutron are composite particles. If we
logarithmically run the value 4.2.22 to the 100GeV scale, we obtain:

αT
SU(3)(MZ) ≈ 0.07 . (4.3.41)

A higher value, closer to the one experimentally measured (∼ 0.1181),
is obtained by rescaling the coupling exponentially, namely, evaluating
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it at the up-down quark scale, and then letting it run logarithmically
up to the 100 GeV scale. This procedure can be justified by conside-
ring that a weak-coupling phase of the colour symmetry starts existing
at the quark scale, which is therefore probably the scale at which its
effective bare value should be evaluated. A discussion of the different
behaviour of the strong versus the weak coupling is given in chapter 8.
In this case we obtain:

αT
SU(3)(MZ) ≈ 0.1 . (4.3.42)

Although closer to the experimental value than the bare value 4.2.22,
there is still a remarkable difference. On the other hand, having to do
with a situation very far from that of weakly interacting states, the
corrections due to the m3/10 scale, as well as the confining phase, must
be expected to play a relevant role.

4.3.5 Gauge boson masses

The SU(2)W symmetry is first broken at the scale at which a mass
gap between top and bottom quark is generated. Above this scale,
we may consider the symmetry as being (approximately) restored. In
section 4.3.2.4 we have seen how these particles acquire a mass. We
have also seen that, in the staple of constructions containing a shift in
the space-time coordinates, there are certain configurations in which
a chiral SU(2) symmetry survives, implying chirality of the weak in-
teraction. This means that the number of configurations in which the
momenta of the gauge bosons associated to SU(2) get shifted is lower
than the number in which the top quark is shifted. We expect there-
fore the mass of the W bosons to be lower than the top mass. Since
these bosons are “created” through the interaction of top and bottom,
we may say that their volume in the phase space is a subvolume of
the volume of the top-bottom pair:

V(W ) ⊂ V(t, b) . (4.3.43)

The actual volume fraction is given by the part of the volume of the
top-bottom space which indeed corresponds to the SU(2) interaction
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(the top-bottom space can involve also other types of interaction),
and is therefore set by the SU(2)W coupling αW . The volume at rest
is just given by the product of the top and bottom masses, so that
the average W mass is given by a coupling-determined fraction of the
multiplicative average of the top and bottom mass:

M2
W ∼ O [αWmtmb] . (4.3.44)

More precisely, the subspace of phase space is shared by the three
SU(2)W bosons that can be exchanged between top and bottom (in
physical situations the transition is always among neutral combina-
tions of matter states). Expression 4.3.44 should therefore bear a
normalization factor 1

3
. Indeed, the normalization is slightly different,

because the neutral boson has a slightly increased phase space. What
distinguishes the mass of the Z boson from the one of the W± bosons
is that the Z boson acquires a “right moving” component: while the
charged bosons interact only with a left-handed chiral current, the neu-
tral boson has now a certain amount of coupling with a right-moving
current. Since the Z mass is related to the volume it occupies in the
phase space, the disagreement between theW and the Z mass is tuned
by the strength of SU(2)W as compared to U(1)Z, the symmetry group
associated to the neutral boson. Being the SU(2)W non-Abelian, its
bosons are charged and interact with each other. We can therefore
think of Z and W+ as two particles whose interaction is mediated by
W−. In order to derive the mass of the Z boson, we can therefore
consider once again the relation 4.3.44, this time with Z, W− andW+

replacing respectively the top and bottom quarks, and the W boson.
In this case, we view the process as a transition between W− and Z,
produced by an element of the “group” SU(2)W/U(1)Z (more preci-
sely not a group but a coset). The coupling g is now the “coupling”
of SU(2)W/U(1)Z. If we set:

αSU(2)W = α∗SU(2)W /U(1)Z
× αU(1)Z , (4.3.45)

we see that, since the U(1)Z coupling is smaller than the one of the
unbroken group, α∗ > 1. In order to reduce to the ordinary weak cou-
pling the relation 4.3.44 must be S-dualized (this agrees with the fact
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that, as we saw in section 4.2.1.2, the gauge bosons contribute to the
strength of the coupling oppositely to the matter states). Moreover,
since we are now considering a transition between bosons instead of
fermions, what we obtain is a relation for the square of masses (mass
terms are of the type m2φ2 instead of mψ2):(

MZ

MW

)2

≈ α∗SU(2)W /U(1)Z
. (4.3.46)

Using the relation 4.3.45, we obtain:

MZ ∼
√
αSU(2)W

αU(1)Z

MW . (4.3.47)

In order to obtain αU(1)Z we can proceed as in section 4.2.1.2, this
time by determining the fraction with respect to the volume occupied
by SU(2)W at the place of SU(2). This means that the coupling of
U(1)Z should stay to the coupling of U(1)γ in the same ratio as the
coupling of SU(2)W stays to the one of SU(2). Therefore, we expect:

αU(1)Z

αSU(2)W

≈
αU(1)γ

αSU(2)
. (4.3.48)

Taking all this into account, we can modify expression 4.3.44 and
obtain:

M2
W

(
2 +

αSU(2)W

αU(1)Z

)
∼ αWmtmb . (4.3.49)

If in expression 4.3.48 we use the value of αγ corrected by taking into
account the phase space shift around the electroweak scale, and assume
in the logarithmic picture a linear running of the inverse corrected
coupling from this scale up to the Planck scale, using the values for
the top and bottom quark masses, expressions 4.3.18 and 4.3.19, we
obtain:

MW± ∼ 84.0GeV , (4.3.50)

and
MZ ∼ 94.9GeV . (4.3.51)

163



4 The spectrum of the universe of codes

These values are higher than the official ones (MW ∼ 80.4GeV,MZ ∼
91.1GeV) but it is not here a matter of obtaining an exact matching
with the experimental values. There are too many roughly estimated
quantities here. For instance, the scale at which the value of αW really
corresponds: the top scale, the bottom, theW boson scale? A different
choice leads to mass values that differ by an amount of the order of
our mismatch. But the same could be said about the quark masses,
and also those of the unstable leptons. How to correctly evaluate the
volume fractions in the phase space? How to correctly account for
correction to masses due to the stapling with the stable mass scale
m3/10? It seems our evaluations tend to overestimate all the masses of
the unstable particles heavier than the stable scale (the neutron mass
scale, to speak). On the other hand, the Z to W mass ratio is:

MZ

MW
∼ 1.129 , (4.3.52)

a value quite close to the experimental one. This assures that, al-
though several details of the fine evaluation of absolute mass values,
and the comparison with the corresponding experimental quantities,
are not yet under full control, our procedure is basically correct.

Let us now consider the present-time values of the electromagnetic
and the weak coupling, αγ, αW , given in 4.2.16 and 4.2.19 (15), and the
total width of the Z boson, given by 4.3.47: αZ = αW × (MW/MZ)

2.
Their numerical relation can approximately be written as:

√
αγ ≈

√
αW sin θ ; (4.3.53)

√
αZ ≈

√
αW cos θ , (4.3.54)

where cos2 θ ≈M2
W/M

2
Z . The angle θ can therefore be identified with

the Weinberg angle, θ ∼ ϑW . Indeed, since the Z boson has a lar-
ger width than the W boson only because it has a part of non-chiral

15In our theoretical framework, the ratio of these couplings remains the same at
any scale.
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interaction similar to the one of the photon, these relations say that
from an effective point of view we have reproduced the first order of
the electroweak gauge sector of the effective action of the Standard
Model (except from the Higgs sector, of course: we don’t have a Higgs
field). The degrees of freedom we have obtained and their interactions
can therefore be parametrized in a similar way, namely with interac-
tion terms of the type g J±μW

∓μ and g
cosϑW

(
J0
μ − sin2 ϑWJ

e.m.
μ

)
Zμ.

The Zμ term precisely says that the Z boson has total width αeff
Z ∼

g2

4π cos2 ϑW
(1− sin2 ϑW )2 = αW cos2 ϑW . We stress however that in our

case the relation 4.3.53 holds only at the numerical level, it is not a
true functional relation. In our theoretical framework the gauge inter-
actions are only an effective first order parametrization of what results
from 2.1.16 and 3.1.4.

4.3.6 Mass corrections: the unstable particles

During the finite time interval of an experiment, the stable scale m3/10

staples to the fluctuations due to the unstable particles, and corrects
them to a lower scale if they are heavier, to a higher scale if they are
lighter. Although we are not able to correctly evaluate in detail this
phenomenon, we try to provide here an effective parametrization, that
reproduces the above described behaviour, leaving a deeper analysis
for the future. In the evaluation of the masses of unstable states, we
can parametrize the effect of the stapling with a stable mass scale
by introducing an effective coupling αeff , that collects all these effects
in the form of an interaction with the stable scale. As it is for the
couplings of our theory, here too we assume that the coupling is given
by the mass ratio, but, as it enters in the correction of masses at the
second order, now the effective relation is:

α2
eff ∼

mstable

m
. (4.3.55)

The effective correction should then be:

m � m (1± αeff) ∓ mstable , (4.3.56)
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where the sign of the correction is chosen in this way: for masses
higher than the stable scale, the correction has a minus sign, because
it lowers the mass, whereas for masses lower than the stable scale it
rises the mass. Notice that we don’t have a universal coupling, but an
effective strength that depends case by case on the mass ratio to the
stable scale. The latter is mostly set to be the proton mass scale, as
the interaction mainly occurs with this particle. Using this effective
parametrization, we can correct the masses to:

mc → 1.29GeV (4.3.57)

mb → 4.09GeV ; (4.3.58)

mt → 173GeV . (4.3.59)

The official values are mc ∼ 1.29GeV, mb ∼ [4.15 − 4.68] GeV and
mt ∼ [172 − 173] GeV respectively. In the case of the strange and
up/down quarks, this procedure should produce the π and K mass.
Indeed, we find:

mu+d � mπ : ∼ 90MeV ; (4.3.60)

ms+d � mK : ∼ 506MeV , (4.3.61)

where we have used mmeson ∼ mquarks (1+ αeff) + mquarks. If instead of
using the up plus the down quark mass we use twice the down mass,
we obtain a pion mass mπ � 122MeV. These computations are to be
taken as a very rough approximation, just an attempt to parametrize
the result of a staple of configurations by converting it in terms of
effective interaction. For the W bosons, a relation similar to 4.3.55
seems to occur, however to a higher order, in agreement with the fact
that these states are not matter states but intermediate states linking
matter states:

α
3
2

eff ∼
mstable

m
. (4.3.62)

Through this, we obtain:

MW → 80GeV , (4.3.63)

and, from 4.3.52, we obtain also:

MZ → 91GeV , (4.3.64)
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values which are in agreement with the official ones. The different
power entering the definition of the effective coupling as compared
to 4.3.55, namely 3/2 vs 2 = 4/2, can be justified as follows. 4 : 3 is the
ratio of the number of degrees of freedom of a massive matter state to
that of a massive vector boson of a broken gauge symmetry. The higher
is the number of degrees of freedom, the lower is the relative weight of
the correction introduced by the superposition with the stable scale,
because the higher is the occupation in the phase space of the particle
under consideration. In a logarithmic picture, products become sums
and ratios differences. The volume V of the particle is the sum of the
contribution of the single degrees of freedom. Under the hypothesis
that all of them contribute by an amount of the same order, for n
degrees of freedom we have therefore, up to a normalization factor,
that translates into a common factor at the exponent:

n lnαeff ∼ Δ lnV ⇒ αneff ∼ Vstable/V = mstable/m . (4.3.65)

If from a qualitative point of view these results indicate how indeed a
stable scale may affect these masses by rising the lower ones and lowe-
ring the higher ones, they must be taken as just an indication. A real
computation of these effective values requires a better understanding
of the effects of the m3/10 scale on the staple of configurations.

4.3.7 The Fermi coupling constant

We are now in a position to make contact with the experimental value
of the weak coupling. This is measured through the so-called Fermi
coupling constant GF , a dimensional (

[
m−2

]
) parameter defined as the

effective coupling of the weak interaction at low transferred momen-
tum 16:

GF√
2

=
g2

8M2
W

=
παeff

W

2M2
W

. (4.3.66)

With αeff
W we indicate here the effective value of the weak coupling,

derived as a function of the electromagnetic coupling and theWeinberg

16Low means here negligible when compared to the W -boson mass.
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angle (or, equivalently, the W to Z boson mass ratio). It is therefore
differently defined from the value we have used in order to derive the
value of the W boson mass from the top and bottom quark mass,
relation 4.3.49. Inserting our results for the W -boson mass, 4.3.63,
the Weinberg angle as derived from 4.3.52, and the electromagnetic
coupling from 4.3.39, we obtain:

GF |MW
≈ 1.7× 10−5GeV−2 , (4.3.67)

a value close to the experimental one (GF = 1.166× 10−5GeV−2, see
ref. [63]). As it was for the case of the fine-structure constant, once
again we are faced with the problem of understanding what is the
meaning of a physical quantity, whose value is always related to a
certain experimental process at a certain scale. From an experimental
point of view the Fermi coupling is obtained by inspecting the pion
into muon decay. For our computation we assume that, since both the
muon and pion width are affected by the m3/10 scale, the “intrinsic”
ratio of their widths is set at the level of free quarks, which also set
the scale of the effective coupling. If instead of 4.3.63 we use the
experimental value of theW mass (80.4GeV) we obtain a result closer
to the one of the literature.
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4.4 Flavour mixing and CP violation

As one may expect, in our approach also the mixing of quark flavours
in weak decays must be considered in the light of the volume occupied
by the various decay channels in the phase space of all possible confi-
gurations. The usual classification into families, and the Lagrangian
one derives for an effective action, are here justified only by their “sta-
tistical” convenience. As a matter of fact, there are no transitions in
principle forbidden, but only rare as compared to other ones. The ex-
perimental observation that mass eigenstates are not weak-interaction
eigenstates is traditionally encoded in a matrix VCKM, the Cabibbo-
Kobayashi-Maskawa matrix, which encodes all the information about
the “non-diagonal” propagation of elementary particles. It is defined
as the matrix which rotates the base of “down” quarks of the SU(2)
doublets, allowing to express the current eigenstates in terms of mass
eigenstates:

VCKM =

⎛⎝ Vud Vus Vub
Vcd Vcs Vcb
Vtd Vts Vtb

⎞⎠ . (4.4.1)

VCKM accounts for the mixing among different generations, as well as
for a CP violating phase. Despite the elegance of the formal treat-
ment, and the intriguing relation between number of quarks and the
existence of a phase, from the point of view of the Standard Model
the entries of the CKM matrix remain external inputs, chosen to fit
experimental data: there seems to be no deep reason why a mixing of
quark generations should exist at all, nor why there should be a phase
responsible for CP violation. The ordinary theoretical treatment sim-
ply provides a parametrization of the quark mixing, for which the
number of quark families results to be precisely the minimal one al-
lowing the existence of a phase giving rise to CP violation. In our
theoretical framework, the mixing occurs because the phase space of
a lighter family can be viewed as a subspace of the phase space of a
heavier family: [3] ⊃ [2] ⊃ [1]. It can be roughly parametrized by a
mixing matrix, but the latter must be viewed as just an approximate
effective representation of a non-field-theoretical phenomenon. In or-
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der to make contact with the Standard Model representation, in the
following, we will estimate the entries of this matrix, as they can be
computed for an effective action derived within our theoretical frame-
work. However, we will only give the absolute values of the matrix
entries, namely the parameters accounting for the amplitude of the
non-diagonal decay channels. In our framework, the violation of CP
is not the consequence of the existence of a non-reabsorbable phase
in a complex CKM matrix, but originates from the general breaking
of any kind of symmetry and parity due to the superposition 2.1.16,
as a consequence of the implied non-invariance of the time evolution
under time-reversal, both at the cosmological and local physics levels.

In our framework neutrino are massive, and therefore can mix and
oscillate. Indeed, as a consequence of 2.1.28 they not only can but do
necessarily mix and oscillate. Our theoretical framework leads however
to a pattern of oscillation that differs in several aspects from the one
typically assumed in the Standard Model. We will therefore discuss
some cases starting from their experimental detection.

4.4.1 Reproducing the CKM matrix entries

According to our previous discussion, the ratios between entries of the
CKM matrix should be of the same order of the ratios of the phase
space volumes of the various families, expression 4.1.8. However, a
comparison with the experimental results must take into account the
conditions under which certain quantities are measured. Needless to
say, the involvement of the stable scale m3/10 is particularly relevant
for the lighter families, for which the experimental energy range falls
close to this scale.

In order to make contact with the ordinary description of the mixing
mechanism, we must consider that, as it is defined, the CKM matrix is
unitary, and collects the information about flavour changing, subtrac-
ted of any dependence on masses: in expressions of amplitudes, this
dependence is carried by other terms. When translating the entropy-
sum driven scenario into the parameters of an effective field theory,
one has to consider how quantities are measured, namely what kind of
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Figure 4.4: Quark mixing corrects interaction vertices: g → gV .

experiment we want to effectively describe. Quark mixing is measured
via meson decays into other mesons, and can be parametrized through
corrections to the coupling strength of their interaction:

g → g × (mi/mj) , (4.4.2)

where i and j indicate the mesons π, K and B.

The CKM matrix elements are of type Vup,down and can be viewed
as corrections to the effective coupling of the vertices. This implies
that the amplitudes are proportional to:

|Vupi,downj |
2 ≈ (mi/mj)

2 (4.4.3)

where (mi/mj) is the ratio of the up (or down) mass of family i to the
the up (or down) mass of family j (see figure 4.4) 17. The CKM matrix
entries are generated by unitarity from Vus, Vub and Vcb. The relation
of amplitudes to the elementary degrees of freedom is here complicated
by the fact that quarks enter into the amplitude expressions through

17Notice that, while the matrix elements relate the “up” of one family to the “bot-
tom” of the other one, the SU(2) symmetry relates bottom to bottom or up to
up states.
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multiplications and resummations. Strong coupling corrections and
the presence of several intermediate decay channels that contribute
through a non-direct flavour changing to the overall decay amplitudes
correct the ratios we would infer by simply considering bare mass
values. The volumes of the events are therefore not so simply related
to ratios of bare masses. A better approximation is obtained by using
meson masses instead of quark masses. The CKM matrix is built as
product of three matrices:

VCKM =

⎛⎝ 1 0 0
0 cosϑsb sinϑsb
0 − sinϑsb cosϑsb

⎞⎠
×

⎛⎝ cosϑdb 0 sinϑdb
0 1 0

− sinϑdb 0 cosϑdb

⎞⎠ (4.4.4)

×

⎛⎝ cosϑds sinϑds 0
− sinϑds cosϑds 0

0 0 1

⎞⎠ ;

where the entries, derived from quark and meson phase space volumes,
correspond to the rotation between second and third, first and third,
and first an second family respectively. In order to proceed to an
evaluation of the matrix entries, we start therefore by considering the
non-diagonal elements |Vts|, |Vtd| and |Vus|. According to the discus-
sion of section 4.2.1.5, the coefficient relating the third to the second
family, should be of the order of δ

2
3 , the ratio of the volumes of the

third to the second family, where δ is the inverse SU(2) coupling, to
be evaluated at the charm/bottom scale. It must be remarked that
the ratios of volumes determining these three matrix elements relate
either the ups or the downs of the two families, not the up of one
family to the down of the other. This implies δ ∼ 100 and:

|Vts| = sinϑsb ∼ 0.046 . (4.4.5)

In the case of |Vus| the phase space volumes are heavily corrected by
the closeness to the m3/10 scale. For an estimate of these entries, it is
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better to directly consider the ratio of the K to the pion mass, which
already accounts for these corrections:

|Vus| = sinϑds ∼
mπ

mK
∼ 0.22 . (4.4.6)

The coefficients |Vtd|, accounting for the mixing of the third to the
first family, can be inferred as a product of volumes:

|Vtd| = sinϑdb ≈ δ
2
3 × mπ

mK
∼ 0.009 . (4.4.7)

These values are to be compared with those officially reported: Vts =
(40.0± 2.7)× 10−3; Vus = 0.2248± 0.0006 and Vtd = (8.2± 0.6)× 10−3

respectively (see Ref. [63]). Plugging these values in 4.4.4 we finally
obtain:

VCKM =

⎛⎝ 0.97549796 0.219999569 0.00198
−0.219855965 0.974447209 0.04599991
0.008190555 −0.045308133 0.998939482

⎞⎠ , (4.4.8)

which parametrizes the quark mixing at the present age of the uni-
verse.

4.4.2 Neutrino oscillations

In the case of neutrinos, the detection of the mixing does not occur
like in the case of quarks. The rotation among neutrino families does
not reflect in corrections to the vertices of a one-loop interaction: the
phenomenon we consider involves free propagating neutrinos. There-
fore, the probabilities are related in simple way to mass ratios of bare
neutrinos. In our scenario, what we can determine is the overall ampli-
tude for the mixing of the muon’s to the electron’s neutrino (or to the
tau neutrino), given by the ratio of volume of the first to the volume
of the second neutrino family, namely the mass ratio of the respective
neutrinos (or the ratio of the second to the third family respectively).
Let us concentrate on the first two families. In the Standard Model
approach neutrino oscillation probabilities go typically as:

P ∼
∣∣∣∑UU e−i

m2L
2E

∣∣∣2 , (4.4.9)
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where U are the entries of the Pontecorvo-Maki-Nakagawa-Sakata ma-
trix (PMNS matrix), m the neutrino mass, L the travelled distance
and E the average neutrino energy. This expression can be re-written
as:

P ∼ |UU |2 sin2
(
Δm2c3L

4�E

)
. (4.4.10)

The argument of the sin2 function can be rewritten as:

1, 27× Δm2L

E
(4.4.11)

where L is in Km, E is in GeV, and m2 is in eV2. Indeed, the sin2

behaviour is a quite general fact which is a direct consequence of the
wave-like propagation, and of being probabilities defined as squares of
amplitudes. Therefore, this behaviour does not depend on the specific
model through which we implement the mixing, and can be assumed
to hold also in our scenario. However, owing to the huge mass diffe-
rence between muon’s and electron’s neutrino, in our scenario during
one period of the electron neutrino wave the muon neutrino under-
goes many oscillation periods. In practice, it just contributes for an
averaged effect: the electron neutrino wave projects onto a constant
muon neutrino state. The sin2 argument of expression 4.4.10 reduces
therefore to:

≈ 1, 27×
m2
νe
L

E
. (4.4.12)

What matters in our case is therefore the electron neutrino wave. From
the values of the neutrino masses at present time, given in 4.3.2, we
can see that for E ∼ O(1)GeV the typical period T is:

m2
νe
T

E
∼ 2π =⇒ T ∼ π

1.27
Km . (4.4.13)

The overall value of the coefficient |UU |2 for the muon to electron
transition, summed over all the internal states, is given by the ratio
of the phase-space volumes of the first and second neutrino family,
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namely by the ratio of the respective masses, normalized to the total
amplitude:

|UU |2 ≈
mνe/mνμ

1 +mνe/mνμ

. (4.4.14)

Averaging over the period of the sin2 part produces a normalization
factor 1/2:

1

2π

∫
2π

sin2(x)dx =
1

2
. (4.4.15)

Inserting the value of the neutrino mass ratio, and taking into account
the integration over the period, we obtain the average value of the
νμ → νe mixing, that we indicate as M12:

M12 ≡ 〈P12〉 =
1

2
×

mνe/mνμ

1 +mνe/mνμ

= 0.00342 . (4.4.16)

This allows us to test the theory on the experiments. The experimen-
tal data we are going to consider are those provided by the Super-
Kamiokande [65], MiniBooNE [66] and MicroBooNE [67, 68, 69, 70].
These sources of experimental data are particularly important, be-
cause they are less dependent on specific hypotheses and models, like
for instance the solar model in the case of solar neutrinos. Moreo-
ver, fitting both the Super-Kamiokande and the MiniBooNE data is
a challenge for a theory of oscillations, not to speak of the puzzling
”disagreement” of MiniBooNE and MicroBooNE data: in the most
optimistic scenario the Standard Model prediction lies 5-6 standard
deviations away from the MiniBooNE data, a result that the Mi-
croBooNE data seem to put into question, although in a seemingly
non-explicable way.

4.4.3 Atmospheric neutrinos

Let us start by considering the detection of atmospheric neutrinos at
Super-Kamiokande. This experiment compares the same muon’s neu-
trino beam before and after the travel through earth, thereby getting
rid of model-dependent systematic errors on the estimation of the ab-
solute amount of neutrinos. Differently from the usual approach, that
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assumes the interaction of neutrinos during their travel through the
earth to be negligible, in our scenario, owing to the shortness of the
oscillation’s wavelength (of the order of the kilometer) during their
travel muon neutrinos can be assumed to be in the average electron’s
neutrinos by a constant mixing fractionM . This reflects in an increa-
sed interaction probability: since stable matter is made of particles of
the first family, the interaction with matter of the muon’s neutrino is in
fact of second order in the weak coupling αw as compared to the inter-
action of the electron’s neutrino. Therefore, when travelling through
matter electron neutrinos have a higher scattering amplitude than pure
muon neutrinos. As a consequence, owing to the frequent oscillation,
during the travel through matter the muon’s neutrino beam decreases
through its partial mutation to a more interacting state 18.

Let us call Iνμ the amount of muon neutrinos which can be measured
at any time of the neutrino flight. This is proportional to the total
amount of neutrinos by a factor that we don’t know, and we don’t
actually need to know. We can write:

∂Iνμ
∂t

≈ −IMAνe , (4.4.17)

where M is the average amount of mixing over the oscillation period,
and Aνe is the scattering amplitude of the electron’s neutrino. Since
we are interested in deriving the fraction of remaining neutrinos as
compared to the initial amount by comparing the amount of decays
before and after travelling through the earth (in other words, since
we are not interested in absolute quantities but in relative ones), let
us normalize Iνμ by dividing it by its initial value. Iνμ will therefore
always be lower than one. In order to determine Aνe we consider that
between muon’s and electron’s neutrino there is an SU(2) rotation
among first and second family. We can therefore write:

Aνμ = α2
SU(2) × Aνe . (4.4.18)

18Oscillations to the tau neutrino can be ignored here, because they do not signifi-
cantly contribute to the interaction with matter. We can therefore assume their
contribution to the detected events to be basically the same before and after
the travel through the hearth, so that it gets systematically subtracted from the
experimental data.
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where αSU(2) is the strength of the families-rotating SU(2) coupling,
the group that determines the mass ratios. Its value must be run to
the appropriate energy scale. In our case, we evaluate it at the mean
energy scale of the beam we want to consider. In turn, at every time
Aνμ is given by the measured amount of muon neutrinos, namely, Iνμ
itself. We obtain therefore:

∂Iνμ
∂t

≈ −I2Mα−2SU(2) . (4.4.19)

Assuming that the cross sections of the electron’s and muon’s neutrino
scattering remain constant during the path through the earth 19 and
are the same as at the point of measurement, we can integrate 4.4.19
to:

1

Ioutνμ

= 1 + α−2SU(2)MΔt , (4.4.20)

where Δt is the duration of the travel through earth. The neutrino
mass is so small that we can consider it to practically travel at almost
the speed of light. Therefore,

Δt ≈ 0.0425 s . (4.4.21)

From 4.4.16 we calculate then:

M = 0.00342 . (4.4.22)

The inverse of the strength of the SU(2) coupling at energy scale
M0 = 1/2

√
T in units of c2 times the Planck mass MP was obtained

in section 4.2.1.1 to be 4.2.12, that we report here:

α−1SU(2) = 147.2 . (4.4.23)

In order to run its inverse to the 0.1GeV scale, we multiply this by
the logarithmic fraction of the two energy scales, thereby obtaining:

α−1SU(2)|E=10−20MP c2 = α−1SU(2)|E=M0
× log10(10

−20)

log10M0
(4.4.24)

19This approximation is justified by the fact that the interaction of the electron’s
neutrino with matter mostly concerns valence electrons, so that the higher den-
sity of earth, five times that of the water, does not play any role.
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and:

α−1SU(2)|E=10−18MP c2 = α−1SU(2)|E=M0 ×
log10(10

−18)

log10M0
(4.4.25)

for energies of 0.1 and 10 GeV respectively (here we approximate the
GeV scale as ∼ 10−19 times the Planck mass scale). Inserting in 4.4.20
these values we obtain:

1

Ioutνμ

∣∣∣∣∣
〈E〉=O(0.1GeV)

≈ 2.09 , (4.4.26)

1

Ioutνμ

∣∣∣∣∣
〈E〉=O(10GeV)

≈ 1.86 . (4.4.27)

Both the values 4.4.26 and 4.4.27 are in agreement with the Super-
Kamiokande results [65], that also report a higher oscillation rate of
neutrino events below, but close to, the GeV energy scale.

4.4.4 The MiniBooNE and MicroBooNE results

Let us now consider the case of neutrinos produced in laboratory. In
the usual interpretation, both these data and those of atmospheric
neutrinos (as well as those of solar and supernova neutrinos) corres-
pond to measurements made at a different phase of the oscillation.
Once parameters such as the mass difference and the PMNS mixing
angles are fixed by the other experiments, in order to obtain the predic-
tion for the MiniBooNE experiment it remains only to plug a different
energy E and distance L in the same expression 4.4.9. Indeed, the
experimental data do not fix the parameters in a unique way, but im-
pose constraints on their values. As a consequence, one speaks rather
of a range of predictions. Nevertheless, in the most optimistic case the
Standard Model fails to account for the experimental result by several
standard deviations (> 4) ([66]): the experimental data show a higher
degree of mixing than expected. Several solutions have been propo-
sed to this puzzle, typically sticking on the idea of oscillation between
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neutrinos of comparable masses, therefore with very long oscillation
period. This is a natural assumption if one i) tries to justify neutrino
masses within a field-theoretical framework, necessarily based on Higgs
mechanism and naturalness of Yukawa couplings, ii) as a consequence
explains also the Super-Kamiokande results in terms of single period
oscillation. In this case one can try to improve the model by intro-
ducing see-saw mechanisms involving non-interacting (sterile) highly
massive neutrinos, that would contribute to the oscillation without
nevertheless being detected.

Let us now see how things look like in our theoretical scenario.
Since we are interested in catching the core of the phenomenon, for
simplicity we just consider what could be the overall effect collectively
accounting for all the channels, at a reference energy of 1 GeV. While
in the case of Super-Kamiokande the period of oscillation is short
in comparison to the travelled distance, in the MiniBooNE case the
detector is placed at around 1/5th of oscillation’s wavelength away
from the source 20. This turns out therefore to correspond to just
after the point of maximal rate of increase of the mixing probability,
when the sin2 function attains the value sin2 ∼ 0.91. The MicroBooNE
experiment is placed some 70 meters upstream (see for instance [67]),
where sin2 ∼ 0.75. Therefore, the MiniBooNE data should in first
approximation correspond to a mixing:

P (νμ → νe) = 0.91×M12 ≈ 0.0031 . (4.4.28)

For energies below 1 GeV we obtain a slightly higher value. For ins-
tance, at 900 MeV the period is 20% shorter, and we obtain:

P (νμ → νe) = 0.95×M12 ≈ 0.00326 . (4.4.29)

This has to be compared with the experimental observation for the
neutrino channel, here extrapolated from the data of [66]:

∼ 0.00323 ± 0.00014 . (4.4.30)

20For an estimation of the travelled distance, we do not consider the whole dis-
tance of the detector from the accelerator’s target [71], but the length bet-
ween the absorber and the neutrino detector, ∼ 450m, plus half the detector’s
length/diameter.

179



4 The spectrum of the universe of codes

According to [66], the best fit of the Standard Model expectation is
instead ∼ 0.0026, more than 4σ away from the experimental result.
Let us now come to the result of MicroBooNE. In this case, for energies
of 1 GeV we obtain:

P (νμ → νe) = 0.72×M12 ≈ 0.0025 , (4.4.31)

and for 900 MeV:

P (νμ → νe) = 0.82×M12 ≈ 0.0028 . (4.4.32)

These calculations are very sensitive to the exact position of the ex-
periment. If the actual center of the experiment is some ten meters
more upstream 21, we obtain:

P (νμ → νe) ≈ 0.0024 (1GeV) , (4.4.33)

and:
P (νμ → νe) ≈ 0.0027 (900MeV) . (4.4.34)

The slope of the typical Standard Model oscillation is not uniquely
determined by the experimental data. In any case, roughly speaking
the MiniBooNE results can be regressed to the MicroBooNE point
by considering that the typical wavelength of Standard Model oscil-
lation models is much larger, at least one order of magnitude lar-
ger, than the one of this scenario. This implies that, in the space
of the small distance between the two experiments, the MiniBooNE
most optimistic mixing, 0.26% according to [66], can be regressed al-
most like a constant (it would at most decrease by some 2% − 3% if
Δm2 ≈ 0.2eV2). As a consequence, in the average our prediction for
the MicroBooNE experiment, 4.4.31–4.4.34, lies below the upper limit
of the values allowed by the Standard Model, whereas the prediction
for MicroBooNE lies above. The situation is illustrated in figure 4.5,
in which we represent the Standard Model upper limit around the two
experiments as a dashed line. Our results are therefore in line with

21This correction is perhaps necessary in order to account for the different sizes of
the MiniBooNE and MicroBooNE detectors: considering also the different size
of the respective detectors, it could be that 85 meters is a better estimate of the
distance between the centers of the two experiments.

180



4.4 Flavour mixing and CP violation

0

0,2

0,4

0,6

0,8

1

1,2

0 5 10 15 20 25 30

m
ixi
ng

distance

SM upper limit

Figure 4.5: The apparent contradiction of the MiniBooNE and Mi-
croBooNE results depends on the architecture of the two
detectors, by coincidence placed precisely just before and
after the threshold of compatibility with the SM allowed
values.
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the data reported in Refs. [67, 68, 69, 70], and justify the absence of
electron’s events excess. According to our analysis, the excess is larger
for lower energies, because the wavelength of the oscillation is larger,
and the MiniBooNE detector is effectively placed more upstream in
the period.

4.4.5 CP violation

In our theoretical framework there is by construction no symmetry
under time reversal. Indeed, one can show that, at any time, the
staple of configurations gives rise to an observable universe in which
all symmetries are broken. However, the time coordinate is something
deeply different from the space coordinates. Strictly speaking, there
is no “space-time”: the concept of “space-time” arises only as an ap-
proximation, as part of an effective description of the fundamental
scenario in terms of evolving quantum fields in a three-dimensional
space. The breaking of the time reversal symmetry is therefore so-
mething conceptually different from the breaking of space parity. Ne-
vertheless, in the approximation of relativistic quantum field theory,
the general non-time reversal invariance of the overall evolution of the
universe reflects, in the microscopic description of physics, into the
breaking of the CP symmetry. On the other hand, the parameter of
this symmetry breaking cannot be referred to an intrinsic property of
a possible mixing matrix of elementary particles, which is in any case
just an effective parametrization, only valid in a certain approximation
of the fundamental description of physics. In other words, although
for practical purposes it is convenient to end up with a description
in terms of elementary particles and fields with dynamics determined
by the entries of a Lagrangian, the parameters of the effective action
are only effective quantities determined time by time, and must be
“updated” during the time evolution of the universe. In this perspec-
tive, CP violation does not originate from quark mixing terms in a
Lagrangian, although the latter can be a useful parametrization for
this phenomenon.
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4.4.6 Time reversal asymmetry in the phase space of particles

By definition, in this theoretical framework physical amplitudes are
not computed out of the ingredients of a Lagrangian formulation at
the base of the physical description: they are a consequence of the
entropic principle ruling 2.1.16. As a consequence, any Lagrangian
description must be viewed as just an effective approximation. The
fundamental objects ruling the time evolution in microscopic pheno-
mena are therefore no more the matter degrees of freedom described
as asymptotic states that come into interaction through terms of an ef-
fective action, and therefore their propagators. Scattering amplitudes
are no more fundamentally associated to vertex operators of string
theory either. The objects to be considered are now the phase space
volumes. This is a different conception of physical evolution, which
implies a new way of dealing with dynamics.

Since decay amplitudes (or, in general, interaction amplitudes) cor-
respond to the volumes occupied by the corresponding processes in
the appropriate phase space, we must expect that also the amount of
violation of time reversal in the weak decays does correspond to an
asymmetry in the volume of the phase space for a decay process and its
CP-mirror, which reflects the general lack of time-reversal symmetry
of the theory at the macroscopic level.

The volume of a process in the phase space depends on several
parameters, such as the strength of the coupling, the type of interac-
tion channels, initial and final momentum etc... Typical field-theory
interaction amplitudes are then integrated over the range of space
momenta. In our case, the full phase-space weight depends also on
the energy-momentum four-volume factor dE d3p, that accounts for
the proper volume of the state under consideration. This latter one
is precisely the part of interest for the evaluation of the time asym-
metry, because it accounts for the volume occupied by the state in
the energy-momentum phase space, which is conjugate to space-time,
and, differently from the internal factors accounting for the strength
of coupling etc., not only it depends on time, as any parameter in this
theoretical framework, but it is very sensitive to the time arrow, and
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to operations performed on the space-time.

In order to evaluate this term, we must consider that a particle is
an energy packet which has a non-vanishing extension both in time
and space. The energy spread is of the order of the mass: dE ∼ m.
Quantum-relativistic arguments, together with the observation that
in this scenario no particle can have a radius smaller than the Planck
length size, imply that also the momentum spread, in each of the
three space directions, must be, in appropriately converted units, of
the order of the mass. All this implies dE d3p ∼ m4. In the case of
the initial state, this is therefore of order m4

i . For the final state, the
decay product, it is m4

f . At the decay point the phase space volume
is increased by the added possibility of interpreting the energy packet
also in terms of the final states. The overall four-volume of the process
is therefore the sum of the volume of the initial and of the final states:
∼ (m4

i + m4
f ). Once all the factors accounting for the detail of the

interaction are factored out, and the proper volume is normalized to
the volume of the initial state, the decay amplitude can be written as:

N ∝
[
1 +

(
mf

mi

)4
]
. (4.4.35)

Let us consider now the decay into the CP-conjugate of the final state.
In order to understand the behaviour in this case we must go back
to the early interpretation of anti-matter as negative energy matter.
In order to compute the variation in the phase space volume due to
time reversal, consider that producing an anti-particle is like creating
a “hole” at the place of a particle. Therefore, the volume of the
produced particle will not be added to, but subtracted from the initial
volume as in order to create an energy-momentum hole:

N ∝
[
1−

(
mf

mi

)4
]
. (4.4.36)

Put in other words, since we are going “backwards in time”, we are
destroying volume in the energy-momentum phase-space. We remark
that we are generating here a net difference between the two processes,
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namely decay into a state and decay “backwards in time” to the conju-
gate state, because in our scenario every process occurs during a finite
amount of time, during which the history of the universe goes by, en-
tropy increases, and all the weights, and phase-space volumes, change
with time. This is not the case of a theory, such as ordinary field
theory, in which the fundamental description is time-conjugation in-
variant, and parity breaking is introduced “ad hoc” by appropriate
terms.

From N and N we obtain the CP-asymmetryACP as (N−N)/(N+
N):

ACP ∼
(
mf

mi

)4

. (4.4.37)

This approach is somehow “inclusive”, not sensitive to distinctions
between direct and indirect CP violation. Moreover, it leads to the
same asymmetry for decay into neutral or into charged particles. Diffe-
rences between decay channels can only be revealed by a more detailed
evaluation of the phase space volumes at play.

4.4.7 CP violation in meson decays

Let us now test our approach on concrete examples. The first case in
which historically CP violation has shown up is the neutral K-mesons
system. The K meson is composed by an s and an (anti-) d quark,
and mostly decays into pions (one pion plus leptons, or also into more
pions at once). The masses of the quarks involved in the transition
that characterizes the process, namely s→ d, are much lower than the
masses of the corresponding mesons, K and π. This means that strong
corrections are at work. Indeed, as discussed in section 4.3.6, the effec-
tive experimental value of these masses is “perturbed” by the “stable”
mass scale of the universe, roughly corresponding to the neutron mass.
This correction is due to the fact that experimental values are obtai-
ned as average results of events that occur during a certain interval of
time, where a stable mass has a relatively higher probability of being
detected than a short-life one. In the specific case of the computation
of the phase space volumes in the purpose of deriving the size of the
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CP violation effect, we can keep into account these effects by using in
the expression 4.4.37 for the mass of the incoming particle (mi) mK

rather than ms and, for mf , mπ instead of md. The possible presence
of other pions as decay products does not affect this computation, be-
cause, owing to the factorization properties of the phase space, in first
approximation the contribution to the phase space volumes of other
particles produced in the decay can be neglected: they can be treated
as “spectators”. mi and mf stay therefore for the mass of the initial
and the final meson involved in the quark decay. Inserting the values
of mK0

≈ 497.6MeV and mπ ≈ 134.98MeV we obtain:

A(K)
CP ∼ 5.4× 10−3 , (4.4.38)

to be compared with the asymmetries obtained from experimental
measurements (see ref. [63] for a state-of-the-art overview):

AL =
Γ(K0

L → π−+ν)− Γ(K0
L → π+−ν)

Γ(K0
L → π−+ν) + Γ(K0

L → π+−ν)
= (3.32± 0.06)× 10−3 ,

(4.4.39)
and similar ones (owing to the high degree of model-dependent elabo-
ration of experimental data, these results are in general to be conside-
red as an indication of the order of magnitude of the effect more than
as highly precise estimates). In the case of the D mesons, we have a
transition c→ s for the decay D→ Kπ, where as before the pion can
be treated as a spectator. In this case, the mass of the charm quark is
slightly above that of the neutron, and we should expect it to be less
affected by strong corrections. Indeed, the D mass is not so different
from the mass of the c quark. If we insert in 4.4.37 as initial mass
the quark c mass (∼ 1.3 GeV), and as final mass the K meson mass
(∼ 498 MeV), we obtain:

−
(
mK

mc

)4

∼ −2.2% . (4.4.40)

If instead we use the D meson mass (1864.9 MeV) we obtain:

−
(
mK

mD

)4

∼ −0.508% . (4.4.41)
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With an “average” mass, 〈m〉 = (mD +mc)/2, we would have:

−
(
mK

〈m〉

)4

∼ −0.9% . (4.4.42)

In 2011 [72] the analysis of experimental data produced an average
asymmetry of about (−0.832±0.033)% (see also ref. [73]), in agreement
with this estimate. Subsequent revisions in the light of an increased
amount of collected experimental data seem to have reduced by about
one order of magnitude this value [74, 75]. However, it is difficult to
derive final conclusions, because the refinement in the analysis strongly
depends on the Standard Model theoretical scheme [63].

A third system in which CP violation plays an important role are the
B mesons. In order to give a rough estimate of the order of magnitude
of the effect we expect in our theoretical framework, we may consider
an average within a range starting from the decay B → J/ψ, based on
a transition b→ c, and therefore expected to be of order −(mc/mb)

4 ∼
−7.6×10−3, passing through the channel B → K, for which we better
consider the K mass instead of that of the quark s, −(mK/mb)

4 ∼
−(498MeV/4400MeV)4 ∼ −1.7× 10−4, to arrive to the semileptonic
decay B →  . . ., which gives an almost negligible asymmetry (for
instance, for the B → μ decay, we have −(106MeV/4400MeV)4 ∼
−3.4 × 10−7). Owing to the high degree of uncertainty, and to the
strong dependence of the latter on theoretical assumptions related to
the choice of the model to be tested, a comparison with experimental
results is difficult, and rather questionable. At present, values of order
∼ 10−5 are not excluded [63].

Notice the change of sign in the asymmetry between decays from
quarks of the second and third family into quarks of the first family
(up, down) and decays that involve only quarks of the second and third
family. In our theoretical framework, we see this as a consequence of
the fact that, as discussed in section 4.3.2.3, owing to the up-down flip
in the first family, as a matter of fact the up quark behaves like an
anti-down, and a down quark like an anti-up. There seems therefore
to be a flip in the effective time arrow between the first and the other
two families.
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4.4.8 CP violation in neutron decays: the baryon asymmetry

In our scenario there is a priori no condition preventing the occurrence
of baryon number violating decays. Similarly to what happens for
the condition of three-dimensionality of space-time, also a situation in
which there is no baryon number violating vertex, like in the Standard
Model, is here recovered only statistically, being the baryon number
violating process very rare in the phase space. If we consider a neutron
beta decay into proton plus electron and neutrino we find that its phase
space volume is much larger than that of the CP-conjugate, baryon
number violating decay channel:

ACP =
m4

p

m4
n

∼ 0.995 . (4.4.43)

As one can expect, also in our scenario baryons can be produced out of
non-baryonic states through baryon-antibaryon pair production, fol-
lowed by asymmetric decay, with preference for one of the two CP-
conjugate states. Indeed, in the universe one observes a baryon to
photon ratio η [76]:

η =
nB
nγ

= (5.5± 0.5)× 10−10 , (4.4.44)

which can be interpreted as the result of the progressive annihilation
of protons against anti-protons during the phase of cooling down of the
universe, namely, before the average temperature of photons fell down
below the mass-threshold for the proton-antiproton pair production,
Tγ < 2mp

22. In this interpretation, the present value of nB/nγ should
be what remains of the asymmetry (nB − nB̄)/nγ. The Kobayashi-
Maskawa mechanism doesn’t allow to account for such a high value of
the asymmetry as the one which is observed. In our case, the size of CP
violation effect depends on time (the age of the universe), and at ear-
lier times it was stronger due to the fact that masses were (relatively)
closer to each other. Namely, the absolute value of the difference of
masses was larger, because all of them were closer to the Planck scale,

22For an introduction see for instance [77].
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but the ratio of mass differences to their absolute value was lower.
Therefore, from expressions 4.4.43, 4.3.26, 4.2.31, 4.2.32 and 4.2.11
one can see that the amount of CP violation was higher. However,
in our scenario also the evolution of the universe occurs in a different
way. There is certainly a cooling down, but this is driven by the tem-
perature of the universe as a black hole (see [16]), with temperature
T ∼ 1/T . The energy densities of matter and radiation are always of
the same order, ρm,r ∼ 1/T 2, therefore there is no phase in which there
is a sea of photons predominantly with an energy higher than that of
matter: the mean energies of photons and matter scale almost in the
same way along the history of the universe [17]. In our scenario, the
photon abundance, or equivalently the baryon asymmetry, does not
come from the pre-history of the universe, but reflects instead a “sta-
tionary condition”, as we now explain. Let us consider the neutron
beta-decay. According to 4.4.43 one would think that from neutrons
only protons are produced, and almost no anti-protons. However, the
process of proton (or antiproton) production through neutron decay
doesn’t go on till the complete disappearance of the neutrons. The rea-
son is that the decay products of the neutron, namely the proton, the
electron, and the neutrino, are all end-products, which cannot further
decay because they are already the particles of minimal mass, at the
end of the decay chain. They can instead easily recombine to repro-
duce the neutron, so that, apart from some unstable isotopes, neutron
and proton are found in nature basically in equal number. Owing to
this “equilibrium” condition, with good approximation we may think
that all the protons existing in the universe come from neutron de-
cays, and that the baryon asymmetry should be computed from the
properties of the neutron decay. However, expression 4.4.43 is of no
help in deriving the amount of protons (antiprotons) effectively pro-
duced, and says nothing about the number of photons one eventually
produces as the result of proton-antiproton annihilation. In order to
derive the CP asymmetry in the neutron/proton system through an
analysis of the volumes of the phase space we must take into account
the fact that, unlike the decays considered in the previous section, here
we have a process at equilibrium. That means, there is no net change
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in the volume of the phase space. One starts with a neutron/proton
system and ends up again with a neutron/proton system. There is ne-
vertheless a transition, involving the passage from up to down quarks
and vice-versa, but this has to be treated as a fluctuation. It can be
viewed as a sort of oscillation of the system p, n, e, ν:

(p, n, e, ν)↔ (p̄, n̄, e+, ν̄) . (4.4.45)

Consider the transition neutron-proton. There are three quarks in-
volved, namely (u, d, d), which go into (u, u, d). It would seem that,
as net change, we just have the decay d → u. However, from the
point of view of the phase space this is not so simple. Owing to the
fact that, unlike the mesons, neutron and proton are made of three
quarks, and therefore are SU(3) singlets in which the colour symmetry
mixes up degrees of freedom of all the three quarks, in the transition
from neutron to proton all the three quarks are involved, in some-
thing like: u → d, d → u, d → u 23. During this transition one
physically generates a fluctuation in the volume of the phase space
corresponding to a mass fluctuation of order Δm = 3Δmd→u. For
what matters the CP violation the volume of the neutron does not
count, and the only asymmetry in the phase space is given by the
transition 0→ 0±Δm, where Δm is measured in units of the neutron
mass. In order to take into account the renormalization due to the
strong corrections, for Δmd→u we don’t take the bare quark mass dif-
ference, but the neutron-proton mass difference. The so computed CP
asymmetry should correspond to one-half of the expression 4.4.44, be-
cause for any pair of proton/antiproton which annihilate one produces
two photons 24, and we can in first approximation neglect the photons
produced by electron-positron and neutrino-antineutrino annihilation
(the latter obtained through the intermediate production of a neutral
boson), because in general of much lower energy. We obtain therefore:[

3(mn −mp)

mn

]4
=

nB − nB̄
2nγ

. (4.4.46)

23Mesons are instead of type qq̄, for which SU(3) singlets are built up diagonally.
24Pair annihilation produces a double photon due to momentum conservation (there

cannot be a photon with zero momentum).
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Inserting the current mass values, we obtain:[
3(mn −mp)

mn

]4
= 2.87× 10−10 , (4.4.47)

and therefore:
ηpredicted ∼ 5.74× 10−10 . (4.4.48)

Notice that this computation does not rely on the details of the va-
rious (virtual) channels, because, like in the CP violating decays, it
considers only the net fluctuation between initial and final state. The-
refore, the value we obtain in this way in principle accounts for the
contribution of all the various virtual channels through which this
transition may be figured out to occur. This value is a ratio of two
mass scales which have almost the same time-dependence. Therefore,
it has almost no time-dependence, and we expect it to approximately
correspond to the value 4.4.44, derived in ref. [76] from nucleosynthesis
constraints.

As we discussed in section 4.3, in this theoretical framework the
colour force is strongly coupled in the strict sense, i.e., the coupling
strength is larger than 1 and the colour degrees of freedom are confined
to singlets. There are no gluons at all. However, as we saw, although
statistically suppressed, in the phase space a certain amount of S-dual
phase is also present. This is the part responsible for the fact that,
under certain conditions, it is possible to inspect the quark structure.
The strong CP problem has here to be addressed in the light of these
considerations: the confining part is unaffected, because it cannot be
written as gauge theory at all, but the S-dual phase is in principle sen-
sitive to CP violation. This justifies why strong CP violation is very
suppressed. The amount of breaking of S-duality substitutes here a
suppression mechanism such as for instance the Peccei-Quinn symme-
try. From this point of view, it is quite likely that this mechanism, and
the related axion fields, suffer the same fate as the Higgs mechanism
and field.
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4.5 Partial S-duality in the electromagnetic interaction

As discussed in section 4.2.1.4, S-duality is not completely broken,
and in principle allows for the existence of situations in which S-dual
aspects show up and can be detected. In section 4.3.4 we have seen how
this occurs for the quark colour force (presence of the strong and weak
coupling phase of αs). In this section, we discuss in detail the case of
the electromagnetic coupling, αγ (in the case of the weak coupling αW
there is no such a kind of phenomenon, because the SU(2)L symmetry
is broken). We will see that, in this way, we can account for the
125GeV resonance detected at LHC, usually interpreted as a Higgs
signal, and for other two lines in the photon spectrum, detected by
analyzing cosmic radiation collected by telescopes (Fermi-LAT), at
∼ 111GeV and ∼ 130GeV.

The sum 2.1.16 accounts for the whole universe. Space-time is not
factored out: the effective geometry resulting from the stapling of
geometries varies from point to point. It is only in the string re-
presentation that, for technical reasons, in order to make possible
a perturbative construction, gravity is basically decoupled, and the
space-time appears as factored out. This produces a description in
which the microscopic world appears to be the same at any point of
space-time, allowing to investigate the spectrum of elementary states,
to be used as the building blocks of an interacting world. In the lan-
guage of 2.1.16, making experimental measurements means looking
at certain selected regions of space-time. In this way, we “filter” the
configurations that contribute in a relevant way to the particular ef-
fective geometry we are investigating, and therefore to the mean value
of observables. When we decide to look at a particular phenomenon
under certain conditions, for instance a scattering of particles at a
certain energy scale, we effectively operate a selection in the staple of
all possible configurations. For instance, we may look at certain phy-
sical systems under conditions that favour the appearance of S-dual
aspects of the one or the other coupling 25. We want to see what are

25A selection of this kind is always implied by the choice of the scale at which to look
at certain phenomena, which determines whether we are in a regime of classical
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the conditions that favour the appearance of a strong coupling phase
of the electromagnetic interaction. Let us consider the collision of two
particles of mass m1 whose interaction corresponds to a gauge symme-
try group G, with coupling g < 1 (weak coupling). In a S-dual phase
(g → 1/g), at a center-of-mass energy Ec.o.m. ∼ 2× (1/g2)×m1, at the
point of collision the two particles behave like one single particle of
massm2 = m1/g

2. This implies that, at this center-of-mass energy, we
should expect an increase of the scattering amplitude, due to the extra
channels that precisely at this energy concur to the process: besides
those of the two particles with mass m1, also those of the particle with
mass m2. On the other hand, the particle with mass m2 can be viewed
as derived from the particles with mass m1 by “eating” the degrees of
freedom of one group factor G, which now contribute to the internal
symmetry of the particle with mass m2, thereby increasing its mass.
In the freezing of the degrees of freedom due to the strong coupling,
the eaten volume is in fact precisely proportional to the S-dual of the
coupling in the weak coupling regime, 1/g2 ∼ 1/α 26.

4.5.1 Ratios of volumes in the phase space

Let us focus our attention on the electromagnetically charged particle-
antiparticle pairs. We want to see more in detail under what conditions
it is possible to produce an effective strongly coupled equivalent state,
leading to an increase of the scattering cross section. In order for this
to occur, it is necessary that the gauge degrees of freedom of a pair
of independent particles can be interpreted as collapsing, due to the
strong coupling, to a configuration in which there is no gauge group at
all (frozen gauge degrees of freedom): this configuration is therefore

or of quantum mechanics. In practice, it is like selecting the value of � in the
Feynman path integral.

26In some sense, the tower of elementary particles, whose masses are at a distance
set by the inverse of the SU(2) coupling, can be viewed as a hierarchy of massive
states obtained by eating the degrees of freedom of lighter ones. The hierarchy
of elementary particles could therefore be considered as as a realization of this
phenomenon in the case of the SU(2) symmetry, which would therefore give the
weak interactions in the weak coupling phase, and the set of massive states in
the strong coupling phase...
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equivalent to the one of an electrically neutral state. The gauge de-
grees of freedom contribute to the volume occupied in the phase space
by the two-particles configuration by a factor V(particle 1) × V(particle 2),
which in this case is reduced to 1 (just one possible configuration,
no enhancement proportional to the size of the orbit of a symmetry).
The only possibility for this to occur is that the scattering does in-
volve hadrons, either as intermediate states, e.g. when in the collision
of a e+e− (or other lepton-antilepton) pair one creates a pp̄ (or hea-
vier hadron) pair, or as colliding particles, e.g. a collision of a pp̄ pair,
where one creates either lepton pairs (e+e−, μ+μ− or τ+τ−) or even
other hadron pairs. Incoming and intermediately produced particles
must then couple in order to form electrically neutral compounds that
contain more than two spinors. For instance, if we let to collide a
pinp̄in pair, it must be possible to create an e+e− pair, which forms
bound states of the type [pine

−] (and/or their charge-conjugates), as
shown in figures 4.9 and 4.10. The reason is the following. In a lepton-
antilepton pair the electromagnetic group acts in opposite way on the
two states of the pair, by a transformation depending on a parame-
ter β: ψ̄ψ → e−iqβ ψ̄ψ eiqβ, where q is the actual value of the electric
charge Q. The non-effectiveness of the overall transformation is at-
tained as the result of an exact point-wise cancellation all over along
the orbit of β, a situation effectively equivalent to having zero elec-
tric charge, like in a neutral state: φQ=0 → ei0βφQ=0. The volume of
the orbit, V (β), is the span of all the values of the parameter β, and
is clearly the same for any value of the electric charge Q, so that in
both the cases it is the same: Vq(β) = V (β), ∀q. Therefore, when the
particle’s compound can be considered equivalent to just one neutral
particle, there is no change in the volume of the orbit in going to the
strong coupling 27: the volume of the group passes from being VQ=q(β)

27This theoretical setup is originally defined on the discrete space, and determining
volumes is in principle a simple thing. The volume of a discrete group is simply
the number of its elements. However, the contact point with the physics we
experience, and test, occurs in the limit to the continuum, where we recover the
familiar concepts of field theory, and gauge groups. In this limit, things are no
more so obvious. But, since we are eventually interested in ratios of volumes,
we don’t really need absolute values of group volumes, but relative ones. In this
case, it is still natural to think of the volumes of compact Lie groups as given
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for the lepton-antilepton pair to VQ=0(β) for the neutral bound state.
On the contrary, in the case of the lepton-hadron compound, like the
[pine

−] pair, the effective charge cancellation occurs through a sum of
Lie-group parameters βi:

βu1 + βu2 + βd = −βe . (4.5.1)

There are therefore two more free parameters than in the case of the
lepton-antilepton pair. As compared to the case of a single neutral
particle, the set of two particles has two group volume factors more. At
the energy of effective strong coupling the same volume of occupation
in the phase space can be equivalently viewed as corresponding either
to two particles, pointwise paired (p, e), or to a configuration with
a single neutral particle (the strongly bound [p − e] compound). In
this second case, the volume occupied in the phase space has to be
interpreted as entirely due to rest energy (= mass) of the neutral
particle. The mass gap between the neutral particle and the two single
particles corresponds to the volume of the missing electromagnetic
symmetry group, namely the product of the volumes, corresponding to
two βi parameters: M[p−e]/Mp+e ∼ [V (β)]2. In order to see the relation
to the coupling g, we must consider that, as it is defined on the Lie
algebra, the coupling g works as unit of measure of the values the Lie
parameter (in gauge theory promoted to local field) can assume along
a period of the orbit:

g × Volume � 2π . (4.5.2)

The rest energies of the two configurations stay therefore in a ratio
given by:

Mp+e

M[p−e]
� g2 . (4.5.3)

In both these expressions we omitted the exact normalization of the
coupling. Indeed, this is fixed by requiring that, by definition, the

by the volume of the space of their parameters, and therefore determine ratios
of volumes as the ratio of the number of generators of the Lie algebra (the ratio
of dimensions).
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ratio of the phase space amplitudes is precisely the coupling α
def≡ g2

4π
(see section 4.2). Relation 4.5.3 can be expressed as:

M[p−e] ∼ α−1Mp+e . (4.5.4)

This situation has to be compared with a typical expression of binding
energy in the weak coupling regime. For instance, in an hydrogen atom
the electronic energy levels, which refer to standing waves and are
derived from the Coulomb potential, therefore a second-order effect
in powers of the coupling, are proportional to [me]α

2. Here we have
instead a first order effect in the S-dual of the coupling: α−1 vs. α2.

4.5.2 The 125 GeV resonance at LHC

Let us now consider the dynamics of a particle-antiparticle scattering.
As seen from a geometric point of view, what we have is a cluster
of energy around the scattering point. When the amount of energy
allows the interpretation of the cluster not only as a set of weakly
interacting elementary particles, but also as bound state of strongly
coupled particles, the combinatorial possibilities increase. This im-
plies a larger volume in the phase space (i.e. a larger volume of the
combinatorial group of the distribution of energy). In our theoretical
framework, this translates into a relation similar to 4.5.3, this time
referred to the full effective coupling of the interaction,Mi/Mf ≈ g2eff ,
the ratio of the whole weight of the initial configuration to the weight
of the final scattering products. Adding new combinatorial possibili-
ties to the initial configuration before the scattering, i.e. increasing
Mi, leads to an increase of the effective coupling, and therefore of the
scattering amplitude.

If we want to look at the details of what is going on, and recover the
familiar description in terms of elementary particles and their inter-
actions, we must leave the phase space and look at the time evolution
of the process. In the phase space, at any given time geometries are
summed at that fixed time to contribute to the average geometry at
that time of the physical evolution. Scattering amplitudes are instead
obtained by summing up scattering events along a certain interval of
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time, corresponding to the duration of the experiment 28. It turns out
that the energy E = α−1γ Mp+e is a critical energy, at which new possibi-
lities of realizing the scattering open up. Consider a proton-antiproton
scattering. At the critical energy, the scattering amplitude receives
comparable contributions not only from a first order process like the
direct pp̄→ γγ scattering: also channels which in an ordinary pertur-
bative expansion over the value of the coupling would be suppressed
contribute in this case with comparable strength. This occurs only at
the critical energy, when an interpretation in terms of strong coupling
opens up: out of this point, these channels are ordinary higher-order
processes, and are therefore suppressed. The additional channels in-
volve the creation of a lepton-antilepton pair (e.g. electron-positron
pair). In the usual perturbative approach, represented by Feynman
diagrams in terms of interactions and propagators of free fields and
particles, these are second- and third-order processes, as illustrated in
figures 4.7 and 4.8. However, at the critical energy of effective strong
coupling there is no g2 and g4 suppression, because the proton-electron
pairs are strongly bound into one state. As a consequence, there is
no gauge symmetry with coupling g mediating the interaction among
particles within the bound state (see figures 4.9 and 4.10). Therefore,
these decays into pairs of photons sum up with a strength compa-
rable to the one of the first-order, direct → γγ process. Above the
critical energy, owing to mismatching momentum account we can no
more interpret the energy cluster as the bound state plus the other
free particles. The reason is the following. At the threshold the total

28A conceptual difference between this approach and the scattering probabilities as
they are defined in quantum mechanics needs here to be pointed out: in the tradi-
tional approach to quantum mechanics, probabilities are defined at any instant
of time, and are compared with experiments performed along a time interval.
Here, speaking in terms of probabilities is not much appropriate: in this scenario
physics is neither deterministic nor probabilistic. It is rather “determined”, as
the result of an infinite number of contributing terms. It is precisely the infi-
nity of contributions, and the impossibility of interpreting all of them in terms
of “classical” geometries, what forcedly leads to an interpretation in terms of
probabilities. In this scenario, speaking in terms of probabilities is considered a
(unavoidable) conceptual artifact, allowing to encode, and predict, experimental
results, because a parametrization in terms of the usual concepts of particles,
masses, couplings, is only allowed above a certain scale (of space, time, energy).
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energy equals the sum of the masses of the involved particles. Above
this energy, there must be also some momentum. But the existence
of a bound state, in this case a (pe) bound state, implies that p, e,
p− and e+ have all the same speed, whereas the first two are paired
to a higher mass state. This is incompatible with energy-momentum
conservation; above the critical energy the bound state channels are
suppressed once again, as they were below the threshold.

To summarize, the scattering amplitude has a peak centered around
the critical energy of effective strong coupling, characterized by an ex-
cess of typically leptonic decays, (̄ → γγ). These processes are
illustrated in figures 4.6, 4.7, 4.8, 4.9 and 4.10. Picture 4.6 shows the
basic, first order pp̄ → γγ process, which is going to be reinforced at
the critical energy by the contributions illustrated in figures 4.7–4.10.
They show scattering channels which, from a field theory point of view,
are of higher order in the coupling αγ. They are therefore suppressed,
except at the critical energy, where one can interpret the intermediate
virtual components as forming a strongly coupled compound, accom-
panied by the disappearance of the gauge symmetry associated to their
interaction 29. At this point, and only at this point, they are no more
of higher order (i.e., no more suppressed). The phenomenon we have
described is not a property of just the pp̄ scattering. The enhancement
of the cross section occurs, under the same conditions, and at the same
critical energy, also if in the diagrams 4.6–4.10 one exchanges proton
and electron: in lepton-antilepton pair scattering, via creation of a
proton-antiproton pair, in which one or both the hadrons couple in a
strong way to the electron and/or the positron. Analogous considera-
tions can be done with the charged leptons μ and τ at the place of the
electron. The peaks of cross section they produce by strongly pairing
to protons occur at higher energy: Ec ∼ Ep̄ + α−1γ × (mp +mμ) and

Ec ∼ Ep̄ + α−1γ × (mp +mτ ) respectively.

In order to compute the critical energy values, we must insert in
the expressions not only the current values of the masses of the par-

29Keep in mind that, despite their representation in figures 4.6–4.10, these processes
are not to be interpreted as depicting Feynman diagrams within a field theory
context.
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Figure 4.6: Representation of a direct pp̄ → γγ scattering channel
(the single channels (uū → 2γ, uū → 2γ, dd̄ → 2γ) are
here collectively indicated by just one proton line).
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Figure 4.7: Representation of a pp̄→ γγ scattering channel via inter-
mediate e+e− pair creation.
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Figure 4.8: Representation of a pp̄→ γγ scattering channel via inter-
mediate e+e− pair creation.

�����
�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����
�����

p+ p−

e+e−

γ

γ γ

incoming

outgoing

(pe) bound state

in
te

rm
ed

ia
te

Figure 4.9: Representation of a pp̄→ γγ scattering channel via inter-
mediate e+e− pair creation at the (pe) bound-state critical
energy.

200



4.5 Partial S-duality in the electromagnetic interaction

�����
�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����
�����

e− e+

p+ p−

γ

γγ

γ

incoming

outgoing

(p−e+) bound state(pe) bound state

in
te

rm
ed

ia
te

Figure 4.10: Representation of a pp̄ → γγ scattering channel via in-
termediate e+e− pair creation at the (pe)(p−e+) double
bound-state critical energy.
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ticles, but also an appropriate value for the electromagnetic coupling.
In order to find it we proceed as follows. In all the cases in which
a lepton-pair is produced, the process occurs at the level of free par-
ticles, namely, it involves just the electromagnetic part of the inter-
action. For an estimate of the energy at which to run the electro-
magnetic coupling, we consider therefore the typical energy of the
free particles involved, the lepton and the free quarks. In the case
of electrons pair, the typical energy of the process is therefore the
MeV scale. The electromagnetic coupling is run to this scale accor-
ding to the behaviour discussed in section 4.3.3, i.e. logarithmically
up to the Planck scale, where it is 1. The scale of the heaviest quark
is about one order of magnitude higher than the electroweak scale,
and 21 orders of magnitude lower than the Planck scale (∼ 1019GeV).
The value of the inverse coupling at that scale is therefore around
21
22 × 137 30. For this value of the coupling we obtain a critical energy
at ∼ 0.939GeV× 137×O(21/22) + 0.939GeV ≈ 124-126GeV. This
is only an approximate estimate, the uncertainty depending on our
lack of precision in the choice of the energy scale for the computation
of the renormalization of the coupling: should it be an average scale
between that of the up and down quarks, or the sum of the quark
masses plus the electron mass? The second option, which corresponds
to choosing as energy scale the total energy of the involved bare par-
ticles, intuitively a reasonable choice, is the one that gives as critical
energy 125GeV. The production of a μμ̄ pair occurs at slightly higher
energy. Inserting the value of the muon mass, and using for the eva-
luation of the electromagnetic coupling the 100MeV scale, we find as
energy threshold E ∼ 1.040MeV × 137 × O(20/22) + 1.040 ≈ 130-
131GeV. The further leptonic peak, corresponding to a (pτ) state, oc-
curs at much higher energy (mτ ∼ 1.777GeV, implying ∼ 324GeV as
critical energy). Enhancements of the cross section at higher energies
are produced when both the lepton-hadron and the anti-lepton–anti-

30We recall that in this theoretical framework the values of masses and couplings
are not freely adjustable parameters, but are computed as functions of the only
free parameter of this scenario, the age of the universe. Comparison with just
one experimental quantity is enough to fix its present value, and to consequently
derive the value of all the remaining physical quantities.
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hadron pairs are at a virtual strong coupling. These peaks are to be
found at about twice the energy of the single-pair peak.

Besides binding quarks with leptons, there is also the possibility of
forming intermediate states made of pairs of quarks electromagneti-
cally strongly coupled with other quarks. These can be a subset of the
quarks and anti-quarks from the colliding proton-antiproton pair, or
pairs formed from quarks of the incoming proton (and/or anti-proton)
and virtual quarks instead of virtual leptons. In this case one forms
mesonic-like states. The lightest resonances are to be expected from
the creation of pion-like bound states, obtained producing interme-
diate uū and dd̄ pairs, in which each virtual quark couples electrically
to a corresponding quark with opposite charge in the incoming proton
or antiproton. Also these states mainly decay into pairs of photons.
The evaluation of the energy thresholds is however in this case affected
by the fact that now incident and virtual quarks can interact among
themselves also through the strong force.

The energy scale of the process, the energy at which the inverse of
the electromagnetic coupling must be run, is arguably no more that
of the bare quarks. In order to find out what is the right energy
scale at which to evaluate the effective electromagnetic coupling to be
used in our computations, we must consider that in this theoretical
scenario physical parameters are average quantities obtained from a
superposition of geometries. In this case, we can figure out that we
have a superposition of configurations in which the involved quarks
interact partly in triplets to form protons, partly in pairs to form pions.
For a rough evaluation of the effective value of the electromagnetic
coupling we choose therefore an intermediate scale between the one
of the proton and the one of the intermediate meson. Owing to the
multiplicative structure of the phase space, we decide for a geometric
mean, 〈E〉 ≈

√
Ep × Eπ. This choice should lead us not too far away

from the correct value.

We consider now the electric coupling of quarks and anti-quarks. In
this case, at the critical energy we gain even powers of the coupling g:
2 or 4, i.e. one or two α−1γ factors for each quark pair. For instance,
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Figure 4.11: Representation of a pp̄→ γγ scattering channel via inter-
mediate uū pair creation at the pion-like critical energy.

in the case of a uū quark pair the analogous of relation 4.5.1 is now a
pair of equations:

βu1 + βu2 + βd = −βū (4.5.5)

βū1 + βū2 + βd̄ = −βu , (4.5.6)

where the two gauge parameters on the r.h.s. are not independent.
These degrees of freedom are therefore reduced or increased always in
pairs. The lowest critical energy is obtained with just one pairing, a
configuration that can only occur through a creation of a quark pair,
of which only one quark couples with an incident hadron, while the
other remains uncoupled. The process is illustrated in figure 4.11. The
energy at which this is expected to occur is obtained as:

0.942[= mp +mu,d] GeV × 137

×O
([

(log10[(
√
mp/mπ) = 2.6] = 0.42) + 19

]/
[22]

)
[= 120.9]

+ 0.942GeV ≈ 114.8GeV .
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Figure 4.12: Representation of a pp̄→ γγ scattering channel via inter-
mediate ππ̄ pair creation at the pion-like critical energy.

If in the calculation of the average mass scale the proton mass weights
more than what assumed in this computation, one obtains a lower
critical energy. The uncertainty in this computation due to the ap-
proximation implicit in the choice of the energy scale for the renorma-
lization of the electromagnetic coupling is of the order of 2-3%, allo-
wing a range of critical energies between some ∼ 110-111GeV to some
∼ 115-116GeV. Notice that we don’t need to think that a pair of full
pion states is produced. This is an alternative channel, which is illus-
trated in figure 4.12. In this second case, an analogous computation,
taking as starting point the mass of the proton plus the mass of the
pion (∼ 129MeV), gives an enhancement of the cross section at around
130GeV. A peak at a slightly higher energy is obtained when the quark
pair is of the type ss̄ (K-like state). In this case, inserting the strange
quark mass (∼ 100MeV) and evaluating the coupling as before, but at
an intermediate energy scale between the proton and the K-meson, we
obtain 1.043GeV×137×O(19.12/22) + 1.043GeV ≈ 125GeV. This
concurs to increase the strength of the enhancement around 125GeV.

205



4 The spectrum of the universe of codes

Considering instead as evaluation scale for the electromagnetic cou-
pling an analogous average scale, but this time with the average taken
between the proton mass and the mass of the bare s-quark, one obtains
a peak close to 130GeV. If one further takes into account the possi-
bility of producing not only the ss̄ quark pair, but a whole K-meson
pair, one gets a peak at an energy about 50% higher than these energy
scales. Along the same line, one can compute the critical energies for
the enhancements occurring at a higher scale, produced by cc̄, bb̄ and
tt̄. They are expected to show up respectively at ≈ 266GeV [p − c],
≈ 594GeV [p− b] and ≈ 1.8× 104GeV [p− c] 31. In the case of strong
coupling among quarks of the colliding hadrons, the quark on the r.h.s.
of 4.5.6 forcedly coincides with one of those on the l.h.s. of 4.5.6. The
two equations are therefore always coupled and the situation is equi-
valent to a double pairing, leading to an α−2γ volume enhancement

factor, at a much higher critical energy 32.

No enhancement of this type is expected to occur when the interme-
diate pair produced in the scattering consists of charged pions. In the
case of pp̄ scattering the quarks of the intermediate pions re-combine
with those of the proton and anti-proton to give rise once again to
pions, produced through a rearrangement of the degrees of freedom.
In the case of lepton-antilepton scattering, there is no possibility of
forming pairs with the quarks of the pions which, at the strong cou-
pling, can lead to a reduction of the electromagnetic gauge symmetry.
This is due to the fact that pions, either neutral or charged, are made
of quark-antiquark pairs (e.g. π+ ↔ ud̄). The SU(2) symmetry re-
lating up and down in this scenario is broken by the introduction of

31In detail: mc = 1.29GeV⇒ proton-charm → (0.938 + 1.29)× 137× O[19/22] +
2.228 ∼ 266GeV; mb = 4.18GeV ⇒ proton-bottom → (0.938 + 4.18) × 137 ×
O[18.5/22] + 5.118 ∼ 594GeV; mt = 173.3GeV ⇒ proton-top → (0.938 +
173.3)× 137×O(18/22) + 174.238 ∼ 19.705 ≈ 1.8× 104GeV.

32For the purpose of determining the scale of the critical energy it is not so relevant
to decide if one has to add to the computation the mass of the free virtual
quark or the one of the meson (it is a matter of 100MeV’s order till 1-2GeV as
compared to the 100 and more GeV). It matters if it has to be included in the
multiplicative rescaling through α−1

γ factors. If we do this in the case of pions
we obtain 1.070× 137× (19/22) + 1.070 ≈ 128, a contribution which is going to
increase, and widen out, the peak around 130GeV.
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masses. Since these run as a power of the inverse of the age of the
universe, m ∼ 1/T p for appropriate exponents p, at the present condi-
tions of the universe, i.e. at large age/volume (T � 1), its breaking
can be considered a kind of “soft breaking”. On the contrary, the
gauge parameters of the electromagnetic gauge group, and in particu-
lar relations like 4.5.1 involving the breaking into quarks and leptons,
are scale-insensitive. As a consequence, for the gauge parameters of
the electromagnetic group the separation between families of particles
and, inside each family, between SU(2) doublets, are second-order ef-
fects: in first approximation the up and down of each doublet are to
be considered the same kind of particle, simply with a different charge.
Also a d̄ quark is like an anti-u quark, simply with a different norma-
lization of the charge. Since all mesons are of the type qiq̄j, where i
and j run over the families of quarks and the two values indicating the
upper and down members of an SU(2) pair, for the sake of the present
analysis they can all be considered of the type qq̄, i.e. consisting of
a quark and its anti-quark. For all of them, the charge neutrality
condition analogous to 4.5.1 is of the type 1

3
β + 2

3
β = β, with just

one parameter, as is the case of a lepton-antilepton pair. This implies
that already at the weak coupling the set of particles of the pair do
transform under U(1) all together, as if they were one single particle.
The analogous of relation 4.5.1 does not involve in this case free pa-
rameters, and there is no volume group factor to be lost at the strong
coupling. For what matters the number of gauge parameters, there is
therefore no difference between weak and strong coupling, and we ex-
pect no enhancements of the cross section due to meson-lepton bound
states to occur.

To summarize, there are several configurations concurring to en-
hance the γγ decay channels, spread out in an energy interval going
from ∼ 111GeV to ∼ 130GeV, with some peaks around 111-115GeV,
125GeV, and 130GeV. Further enhancements are to be found at hi-
gher energies. Since in these processes we don’t deal with diverging
quantities, each channel contributing to this kind of resonance is ex-
pected to enhance the decay amplitude by a relatively small amount.
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Its effect may therefore be difficult to detect and identify out of the
ground decay channels and the statistical noise fluctuations, unless
there are several peaks close enough to each other, so that their widths
can overlap. Around 125GeV there is indeed a whole bunch of confi-
gurations with peaks potentially overlapping due to their statistical
width. They must be compared with the resonance found in the pp̄
scattering at LHC [60, 78, 79], which has an analogous signature. This
is the energy at which this effect is expected to manifest itself in the
strongest way. Besides this line, at a lower level of strength we ex-
pect to find the line around 130GeV, which is also the result of a
collection of contributions. Although apparently not detected in the
Large Hadron Collider, this threshold could be the line observed by
astronomers [80, 81, 82, 83], that in our framework is therefore not
interpreted as an evidence of dark matter. Astrophysical observations
give indications also for a line around 111GeV [84], which could be
compatible, within the approximations implied in our computations,
with the enhancement at 111-115GeV we have found as first energy
threshold.
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5 Cosmology

5.1 The geometry of the universe

As discussed in chapter 3, the absence in our theoretical framework
of symmetry under space-time translations implies a different norma-
lization of string amplitudes, which must be now normalized in such a
way that densities scale like the inverse of the Jacobian of the trans-
formation between string world-sheet and target space coordinates.
An amplitude which in the light-cone gauge is of order one, like the
vacuum energy in the non-supersymmetric orbifolds considered in the
previous section, in which supersymmetry is broken at the unit scale
(identified with the Planck scale), gives therefore an energy density
which scales as:

ρ(E) ∼ 1

T 2
. (5.1.1)

In order to get the value of a global quantity, like the entropy, we
must instead multiply the string amplitude by the Jacobian factor,
obtaining the scaling:

S ∝ T 2 . (5.1.2)

The total energy at a certain time T of the history of the universe,
given by the integral of the energy density over the space volume of
the universe at time T , scales then as:

E(T ) ∼
∫
T
d3

1

T 2
≈ T . (5.1.3)

In the string representation we recover therefore the values we com-
puted in the ground description of this scenario.
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5.1.1 The solution of the FRW equations

The density 5.1.1 collects both the pure geometric, i.e. cosmological,
and the matter/radiation contribution to the energy density. These
terms are separately of the same order. The reason is that the set
of most singular string vacua inherits what remains of the symmetry
under exchange of three sectors of the theory at the N4 = 2 level,
the S − T − U symmetry of the orbifold construction, which can be
seen to exchange the roles of gravity, matter and radiation by ex-
changing the sectors giving rise to the corresponding fields. In the
further steps of symmetry breaking this symmetry is broken by terms
of order O(1/T p) in the string partition function. The energy den-
sities get therefore distinguished by higher order terms: ρ ∼ 1

T 2 −→
1
T 2 (1 +O(1/T p)).
Let us now investigate the geometry of the expansion of the uni-

verse. As the universe evolves, the energy density and the curvature
of space-time decrease toward a flat limit, and the dominant configu-
ration tends to a “classical” description. At large T it is therefore
reasonable to suppose that this configuration admits a description in
terms of Robertson-Walker metric, i.e. a classical metric of the type:

ds2 = dt2 − R2(t)

[
dr2

1− kr2 + r2( dθ2 + sin2 θ dφ2)

]
, (5.1.4)

where, in our case, t ≡ T , and r ≤ 1. The metric should correspond
to a closed universe, k = 1. Under the assumption of perfect fluid for
the energy-momentum tensor, the Einstein’s equations lead to:(

Ṙ

R

)2

= − k

R2
+

{
8πGN ρ

3
+

Λ

3

}
, (5.1.5)

where we have collected within brackets the contribution of the stress-
energy tensor and of the cosmological term. Inserting the “Ansatz”
R = T we obtain:(

Ṙ

R

)2

= − (k = 1)

R2
+

{
∼ 2

R2

}
∼ 1

R2
, (5.1.6)
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that we can write as: (
Ṙ

R

)2

=
κ2

R2
, (5.1.7)

for some coefficient κ. The equation is solved by R = κ t, consistently
with our Ansatz. This confirms that the dominant configuration cor-
responds to a spherical Robertson-Walker metric, describing a universe
bounded by a horizon expanding at a fixed ratio to the speed of light.

The comparison of our results with astronomical data contains ho-
wever a possible weak point. Experimental data are given as a result
of a process of interpretation of certain measurements, for instance
through a series of interpolations of parameters. All this is consis-
tently done within a well defined theoretical framework. Usually, one
takes a “conservative” attitude and lets the interpolations run in a
class of models. However, this is always done within a finite class of
models. In principle, we are not allowed to compare theoretical predic-
tions with numbers obtained through the elaboration of measurements
in a different theoretical framework: in general, this doesn’t make any
sense. However, in the present case this comparison is not meanin-
gless, and this not on the base of theoretical grounds: the reason is
that, for what concerns the time dependence of cosmic parameters
and energy densities, the solution we are proposing does not behave,
at present time, much differently from the “classical” cosmological
models usually considered in the theoretical extrapolations from the
experimental measurements. The rate of variation of energy density
is in fact: ρ̇ ∼ ∂(1/R2)/∂T = 1/T 3 = 1/R3. The values of the
three kinds of densities can therefore be approximated by a constant
within a wide time interval. For instance, as long as the accuracy of
measurements does not go beyond the order of magnitude, these den-
sities can be assumed to be constant within a range of several billions
of years. For the purpose of testing the statements and conclusions of
the present analysis, the use of the known experimental data about the
cosmological constant, derived within the framework of a Robertson-
Walker universe with constant densities, is therefore justified.

A universe evolving according to eq. 5.1.6 is not accelerated : Ṙ = 1
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and R̈ = 0. Owing to the existence of an effective Robertson-Walker
description, the red-shift can be computed as usual. We have:

1 + z =
ν1
ν2

=
R2

R1
=
T2
T1
, (5.1.8)

where ν1 is the frequency of the emitted light, ν2 the frequency which
is observed, and R1, R2 are respectively the scale factor for the emitter
and the observer. R = T is precisely the statement that the expan-
sion is not accelerated. Expression 5.1.8 however accounts for just the
“bare” red-shift, namely the part due to the expansion of the universe:
it does not account for the corrections coming from the time depen-
dence of masses and couplings, that we will discuss in section 5.1.2.
Usually, this effect is not taken into account, because in the standard
scenarios masses are assumed to be constant. In our scenario they
depend instead on the age of the universe. A change in the values
of masses and couplings reflects in a change of the atomic energy le-
vels, and therefore in a change of the emitted frequencies. We will see
that, once the observed frequencies in expression 5.1.8 are corrected
to include also the change in the scale of energies, the scaling of the
emitted to observed frequency ratio is not anymore proportional to
the ratio of the corresponding ages of the universe. Since the conclu-
sions about the rate of expansion are precisely derived by comparing
red-shift data of objects located at a certain space-time distance from
each other, this explains why the expansion appears to be accelerated.

5.1.2 The apparent acceleration of the universe

We are now in a position to come back to the issue of the apparent
acceleration of the universe. In our framework, atomic energy levels
depend on the age of the universe. More precisely, each energy le-
vel scales in principle as a different function of time. Their ratios,
and therefore the ratios of emitted frequencies, are not constant over
time. We can separate the time dependence into an overall average
effect, a time-dependent set of “central values” of ratios, expressed as
a unique function of time, common to all atomic spectra, and time-
dependent departures from this central value, that take into account

212



5.1 The geometry of the universe

the independent scaling of each energy level. The overall average effect
is what results in an effective red-shift, whereas the second term, the
individual departures, are responsible for what in the literature, de-
pending on the model and approach, are referred to as “time variation
of α”, or “time variation of the mass”, or “time-dependent relativis-
tic effects”. We will come back to this issue in section 5.4.0.1. Here
we consider the universal term. The main contribution to the time-
dependence of the atomic spectra comes from the dependence of the
Bohr radius on the quantity mα2, where m is the electron’s reduced
mass, and α the electromagnetic coupling. In order to give a rough
estimate of the red-shift effect which is produced, we can approximate
the time dependence of any mass with the one of the stable matter
scales:

m ∼ T −3/10 . (5.1.9)

The time-dependence of α can be obtained from the expressions given

in section 4.2.1.2, and turns out to be α ∼ T − 47
28×45 , negligible as

compared to the time dependence of the mass. From this, we derive
that the above behaviour induces an apparent shift in the frequencies
of the light emitted at different distances from the observer, i.e. at
different ages of the universe, due to the different scale of the atomic
energy levels, of the order:

ν̃1
ν̃2

=

(
T2
T1

) 3
10

. (5.1.10)

Once “subtracted” from the bare red-shift 5.1.8, this gives an appa-
rent, effective red-shift zapp.:

1 + zapp. =

(
ν1
ν2

)
observed

=

(
T2
T1

) 7
10

, (5.1.11)

as if the universe were expanding with rate R̃ ∼ T 7/10, normally
expected for a matter dominated era.

At the base of what is considered an experimental evidence of the
accelerated expansion of the universe is the observed acceleration in
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the time variation of the red-shift effect. In the classical approach, the
expansion occurs at the level of the overall scale factor of the space
part of the Robertson-Walker metric:

ds2 = dt2 − R2(t)
[
d�x2

]
. (5.1.12)

One must however underline that this is the metric ruling the cos-
mological scale of the universe. If the rescaling expressed in 5.1.12
was instead valid at any scale, it would imply a change in the overall
scale of physics. In practice, just an unobservable scale redefinition 1.
In our approach, the red-shift effect receives a different explanation,
being given in terms of accelerated variation of ratios of mass and
energy scales, and therefore of observed emitted frequencies, without
recourse to an accelerated expansion of the metric at a cosmological
scale. There is therefore no need for a conceptual separation between
a local, and an effective, large-scale description of physics.

1The scale factor R(t) precisely defines the speed of light (obtained from the condi-
tion ds2 = 0, which implies dx/dt = 1/R). Saying that there is an expansion of
the overall scale of the metric is equivalent to saying that there is an expansion of
the scale according to which space lengths are measured in terms of time length.
In other words, saying that there is such an expansion means that there is an ex-
pansion (more precisely a contraction) of the speed of light. Suppose we want to
compare wavelengths between present time and a time at which the scale was 1/2
of the present one. From a physical point of view, what we observe is radiation
produced by atomic transitions, and we compare wavelengths keeping fixed the
period of the light wave. Since in the past time lengths were contracted by 1/2
with respect to today, during each period of the wave light was traveling twice
as much as today. Therefore, the same atomic transition generated a photon
with twice the wavelength as today. However, if the space scale was contracted,
also energies were different. Energies scale in fact as inverse of lengths (consi-
der for instance the electric potential, V = e2/R). In our specific example, this
means that energies were doubled, and, according to E = hν, also frequencies
were doubled, or equivalently periods were halved. The same atomic transition
produced therefore photons with twice the frequency, or half the period, as com-
pared to today. This fact, combined with the fact that the speed was doubled,
implies that, for the same physical phenomenon, the effective wavelength was
the same as today. Any such an overall scale of the metric would be physically
unobservable.
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5.2 The CMB radiation

In the usual cosmological interpretation, the cosmic background radia-
tion, which has the typical spectrum of a black body radiation with a
temperature of about 2.8K [85, 86], is interpreted as being the rem-
nant of very early processes in the universe. It would consist of pho-
tons cooled down during the expansion of the universe. At the origin
they should have possessed an energy corresponding to a microwave
length, as expected from energy exchange due to Compton scattering
through the plasma at the origin of the universe. The low temperature
would then be the effect of the cooling down of the universe due to its
expansion.

In our theoretical framework it is not necessary to advocate the pri-
mordial history of the universe in order to account for the existence of
a low-temperature radiation. Being a background radiation, it must
not evidently come from clearly identified sources such as electronic
transitions in the elements composing stars etc. Indeed, the fact that
the superposition of configurations 3.1.4 leads to a spectrum that we
can interpret in terms of the usual elementary particles and fields
does not mean that the physics of the universe is completely accoun-
ted in terms of these degrees of freedom and their interactions. Like
the masses of the elementary particles, also the photon energies are
the result of an averaging procedure over all the configurations. As
such, they do not necessarily correspond to energy levels of ordinary
elementary particles. In section 4.1.1.4 we have seen that all mas-
sive states are built over a background corresponding to the (s, s, s)
configuration. We may think of fluctuations around this background.
For instance, electron-positron pairs that are temporarily popped out,
and disappear into a pair of photons. In order to estimate the mean
energy of such a radiation, we may think of the background as a kind
of thermal bath, constituted by “particles” of mass:

〈m〉 ∼ 1√
T
. (5.2.1)

The normalization is twice as much as M0 as given in 4.1.12, be-
cause here we are looking for neutral states, therefore possible particle-
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antiparticle pairs. We can obtain the energy of a radiated photon by
considering once again relation 4.3.44, where this time instead of the
square of the W mass we have the square of the energy of the photon
Eγ, and on the r.h.s. we have the electromagnetic coupling αγ and the
mass 〈m〉:

〈E〉2γ ∼ αγ〈m〉〈m〉 , (5.2.2)

from which we obtain:

〈Eγ〉 ∼
√
αγ

1√
T
. (5.2.3)

This expression can be interpreted in the following way: the mean
energy of the radiated photons is not exactly the mean ground energy,
because the average is weighted by the fraction of phase space volume
which is effectively involved in the electromagnetic interaction with the
background. This fraction is precisely set by the value of the electro-
magnetic coupling. The scale at which αγ is evaluated is not necessa-
rilyM0: if the radiation is produced by electron-positron interactions,
the appropriate scale could be the rest energy of the electron-positron
system, or lie something above it. Just to be concrete, if we insert
in 5.2.3 the value of αγ at the electron’s scale, as derived through
a logarithmic running from M0 as in section 4.3.3, α−1γ |me

∼ 131.4,
and the value A.1 for the present age of the universe, after converting
energy into temperature through the Boltzmann constant we obtain:

Tγ ≡ k−1 < pγ > = k−1E0
γ ∼ 2.70K . (5.2.4)

If we instead run the coupling to an average 〈memumd〉 scale, we have
α−1γ |me

∼ 132.8, and we obtain:

Tγ ∼ 2.73K . (5.2.5)

The Gaussian tail of the resonance, leading to a black-body distri-
bution of frequencies, is in this context the consequence of the su-
perposition 2.1.16, for which the entropy sum, once restricted to the
phenomenon under consideration, and thermodynamically interpreted
as in section 3.5, namely through S ∼ E/T , becomes a typical Gaus-
sian distribution.
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5.3 The fate of dark matter and the Chandra observations

A discrepancy between our framework and the common expectations is
the absence in our scenario of dark matter. According to our analysis,
the universe consists only of the already known and detected particles.
Of course, there can be regions of the space in which a high concen-
tration of neutrinos, which for us are massive, increases the curvature
without being electromagnetically detected. But this is not going to
change dramatically the scenario: there is no hidden matter acting as
an extra source able to increase the gravitational force by around a
factor ten over what is produced by visible matter, as it seems to be
required in order to explain a gravitational attraction among galaxies
much higher than expected on the base of the estimated mass of the
visible stars. The problem arises in several contexts: Big Bang nucleo-
synthesis, rotational speed of galaxies, gravitational lensing. All these
points would require a detailed investigation, beyond the scope of this
work. We will also not attempt to rediscuss a huge literature, and limit
ourselves here to mention some hypotheses. The first remark is that
the discrepancies between theoretical expectations and the observed
effects, which are found in so different issues as primordial universe,
nucleosynthesis and galaxy phenomenology, don’t need necessarily to
be explained all in the same way.

Let’s consider the problems related to the motion of external stars
in spiral galaxies, where for the first time the issue of dark matter
has been addressed, and the “anomalous” gravitational lensing, with
reference to the effect observed in the 1E0657-558 cluster [87]. It is
since 1933 (Fritz Zwicky) that, by looking at the amount of red-shift
in the light emitted by the stars in the wings of a spiral galaxy, it has
been noticed how, differently from what expected, the rotation speed
does not decrease with the inverse of the square root of the radius: it
is a constant [88, 89]. Presence of invisible matter has been advocated,
in order to fill the gap between the mass of the observed matter and
the amount necessary to increase the gravitational force. Indeed, the
expectation that the rotation speed of stars in the external legs should
decrease is based on the assumption that almost the entire mass of the
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galaxy is concentrated in the bulge at the center of the spiral. Any
star on the wings would therefore feel the typical gravitational field
due to a fixed, central mass.

In the framework of our scenario, masses have been in the past hi-
gher than what they are now. Moreover, owing to the fact that, as
we discuss in chapter 2, the universe “closes up”, in such a way that
the horizon we observe corresponds to a “point”, the space separation
between objects located at a certain cosmic distance from us appears
to be larger than what actually is. All this could mean that the mass
of the center of a galaxy, as compared to the wings, has been systema-
tically overestimated. It would be interesting to see, by carrying out
a detailed re-examination of the astronomical observations, whether
the behaviour of the center of a galaxy still requires to advocate the
presence of a heavy black hole, in order to explain a gravitational force
higher than what expected on the base of the estimated mass of the
visible stars. In any case, it is possible that, once the downscaling of
length and upscaling of masses has been appropriately taken into ac-
count, a better approximation of a spiral galaxy is the one sketched in
figure 5.1. In part A of the picture the galaxy is (very roughly) repre-
sented with wide wings, with stars relatively “broadened” on the plane
of the galaxy. Part B shows the same figure, simply with much narro-
wer arms. In picture A the broad lines have been shadowed in a way
to make evident that the higher star density of the bulge is largely due
to the “superposition” of the various arms. Nevertheless, as it is clear
from picture B, the problem remains basically “one-dimensional”: the
wings are one-dimensional lines coming out of the center of the galaxy.
Under the hypothesis that all the stars have the same mass, the linear
density of a wing is constant, and, once integrated from the center
up to a certain radius R, the total mass MR of the portion of galaxy
enclosed within a distance R from the center is roughly proportional
to R:

ρ =
dM

dr
∼ const. ⇒ MR ∼ const × R . (5.3.1)

In the expression of the gravitational potential, the linear R depen-
dence of the mass cancels against the R appearing in the denominator
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(the potential remains the one of a Coulomb force). The whole galaxy
is the superposition of several pieces of this kind. The gravitational
potential energy is therefore a constant times the mass of the star in
the wing. Conservation of energy implies therefore that also the ve-
locity of the star does not depend on the radius R. We stress that
this is only an approximation: it would be exact if the arms were not
those of a spiral but straight legs coming out radially from the center,
and under the assumption that all the stars of the bulge correspond
to the superposition of the arms.

In the case of the 1E0657-558 cluster, the Chandra observatory has
detected a gravitational lensing higher than what expected on the base
of the amount of luminous matter. Moreover, the highest effect cor-
responds to two dark regions close to the cluster, rather than to places
where the visible matter is more dense. In the framework of our scena-
rio, a possible explanation could be that what is observed is the effect
of a “solitonic” gravitational wave, produced as a consequence of the
separation of one sub-cluster from the other one. This could increase
the gravitational force by an amount equivalent to the displaced clus-
ter mass, for a length/time comparable to the cluster size, therefore
a time much higher than the few hours during which the effect has
been measured (∼ 140 hours). It remains that the lensing is around
8-9 times higher than what expected on the base of the amount of
visible mass. However, the cluster under consideration is at about
4 billion light years away from us. This is around 1/3 of the age of
the universe. This time distance is large enough to make relevant the
effects due to a change of the curvature of space-time along the evo-
lution of the universe, as well as the change of masses. Furthermore,
as we discussed above, the apparent space separation between objects
located at a certain cosmic distance from us must be appropriately
downscaled, in order to account for the curving up of space-time into
a sphere, with the horizon “identified” with the origin. Putting all this
together, we obtain that the effective gravitational force experienced
on the 1E0657-558 cluster is (or, better, was) indeed 8-9 times higher
than what it appears to us on the base of the expected mass of the
objects in the cluster. This is precisely the amount otherwise referred
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Figure 5.1: Picture A is the rough sketch of a spiral galaxy, in which
the arms are broad and shadowed in a way to highlight the
increasing mass density due to their superposition at the
center. Figure B represents the same object, with the arms
narrowed down, in order to highlight the one-dimensional
nature of the physical problem, for what concerns the mass
density.
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to dark matter.

5.4 Cosmological constraints

Cosmology addresses two kinds of problems for what concerns the
“running back” of a theory, or an “early time” model. Namely, i) the
possible non-constancy of what are commonly called “constants”, and
ii) the agreement with the expected origin/evolution of the early uni-
verse (baryogenesis, nucleosynthesis etc...). In our framework, these
issues are put in a light quite different from the usual perspective:
there are in fact indeed no constants; therefore, a variation of cou-
plings, masses, cosmological parameters, and, as a consequence, energy
spectra, is naturally implemented. However, there is a peculiarity: all
these parameters scale as appropriate powers of the age of the uni-
verse. As a consequence, a “number” close to one at present day has
a very mild time dependence:

O(1) ≈ T ε ⇒ |ε| 
 1 , (5.4.1)

and therefore varies quite a little with time. Oklo and nucleosynthesis
bounds, being given as ratios of masses and couplings that cancel each
other to an almost “adimensional” quantity, are precisely of this kind.
In our case they don’t provide therefore any dangerous constraint.

For what concerns the non-constancy of “constants”, there are not
enough data enabling to test our prediction about a time variation of
the cosmological constant, whose measurement is still too imprecise.
A more stringent test of the variation of parameters comes from the
observations on the light emitted by ancient Quasars. In this case,
the spectrum shows an “anomalous” red-shifted spectrum. This shift
should not be confused with the usual red-shift, of which we have
discussed in section 5.1.1. The effect we consider here persists once the
“universal” red-shift effect has been subtracted. As an explanation,
it is often advocated a possible time variation of the fine-structure
constant α.
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5.4.0.1 The “time dependence of α”

The issue of the possible time variation of the fine-structure constant
arises in the framework of string theory derived effective models for
cosmology and elementary particles. Various investigations have consi-
dered the possibility of producing some evidence of this variation, or
at least a bound on its size. To this regard, astrophysics is certainly
a favoured field of research, in that it naturally provides us with data
about earlier ages of the universe. A possible signal for such a time
variation could be an observed deviation in the absorption spectra of
ancient Quasars [90, 91, 92, 93]. This effect consists is a deviation
in the energies corresponding to some electron transitions, which re-
mains after subtraction of the background effect of the red-shift, and
is obtained with interpolations and fitting of data.

What is observed is a decrease of the relativistic effects in the ener-
gies of the electrons cloud, with respect to what expected on the base
of present-day parameters (in particular, the fine-structure constant).
Indeed, while the atomic spectra are universally proportional to the
atomic unit me2 ∝ mα2, the relativistic corrections depend on the
coupling α. After subtraction of the “universal” red-shift effects, their
variation should then be directly related to a variation of α. In our
framework, the explanation comes from considering both the scaling
of α and the one of masses at the same time: going backwards in time,
α increases, as also the proton and the electron mass do, but the ratio
of α to the mass scales decreases. Namely, if we measure the variation
of α with respect to the electron mass scale (whether the true electron
mass or the reduced mass doesn’t make a relevant difference 2) we ob-
serve a decrease of the coupling α. Indeed, the main term contributing
to the time dependence of atomic spectra is the productmα2, entering
the expression of the Bohr radius. If we define a reduced coupling as
the coupling measured in units of mα2 we can explicitly see that it

2In the hydrogen atom this is given by μ = memp/(me +mp). A discussion about
the possibility of referring to a change of this quantity the effect measured in
ref. [91] can be found in refs. [94, 95, 96].
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decreases if we go backwards in time:

ᾱ
def≡ α

mα2
≈ T 1

3+
1
28 . (5.4.2)

The results reported in the literature (see ref. [91]) exclude from the
evaluation the effect of the red-shift. Atomic energies have an approxi-
mate scaling of the type (see for instance ref. [91]):

En ≈ Kn (mα2) + Γn α
2 (mα2) , (5.4.3)

where Kn and Γn are constants and the second term, of order α2 with
respect to the first one, accounts for the relativistic corrections.

In our case all energies scale with time. The red-shift is an average
effect, based on a central value of the atomic spectra, out of which
depart deviations due the different time-scaling of the various energy
levels, which are different functions of mass and coupling. They can be
considered of order α2 as compared to the central value. The quantity
suitable for a comparison is therefore:

〈|Δ(E − 〈E〉)|〉 ∼ O(α2)× ∂t ln
(
α2

mα2

)
×Δt

∼ O(α2)× 3

10
×
(
1

5
× 10−60

)
×
(
4× 1050

)
yr−1

∼ O(10−15) yr−1 , (5.4.4)

where the last factor accounts for the conversion of time from Planck
units to years (see appendix). This is the relative variation of the
relativistic correction subtracted of the universal part (reabsorbed in
the red-shift), to be compared with the results of [90], as reported also
in [91]:

〈α̇〉
α

= −2.2 ± 5.1 × 10−16 yr−1 = O(10−15) yr−1 . (5.4.5)

5.4.0.2 The Oklo bound

Data from the natural fission reactor, active in Oklo around two bil-
lions years ago, are today considered one of the most important sources
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of constraints on the time variation of the fundamental constants. By
comparing the cross section for the neutron capture by Samarium at
present time with the one estimated at the time of the reactor’s acti-
vity, one derives a bound on the possible variation of the fine-structure
constant, and on the ratio GFm

2
p, in the corresponding time interval.

The interpretation of the experimental measurements and their trans-
lation into a bound on the variation of the capture energy resonance
is not so straightforward, and depends on several hypotheses. In any
case, all these steps are sufficiently under control. More uncertain is
the translation of this bound on the energy variation into a bound on
the variation of the fine-structure constant and other parameters: this
passage requires strong assumptions about what is going to contribute
to the atomic energies. This analysis was carried out in ref. [97], ba-
sically on the hypothesis that the main contribution to the resonance
energy comes from the Coulomb potential of the electric interaction
among the various protons of which the nucleus of Samarium consists.
According to [97], after a certain amount of reasonable approxima-
tions, the energy bound translates into a bound on the variation of
the electromagnetic coupling. A simple look at expression 4.2.11 shows
that, in our scenario, the variation of this coupling over the time inter-
val under consideration violates the Oklo bound. This bound seems
therefore to rule out our theoretical framework. However, things are
not so simple: the derivation of a bound on a coupling out of a bound
on energies works much differently in our framework, and we cannot
simply use for our purpose the results of [97]. Indeed, in our frame-
work what varies with time is not only the fine-structure constant, but
also the nuclear force, and the proton and neutron mass as well. Of
relevance for us is therefore not a bound on a coupling, derived under
the hypothesis of keeping everything else fixed, but the bound on the
energy itself [97]:

−0.12 eV < ΔE < 0.09 eV . (5.4.6)

In order to give an estimate of the amount of the energy variation
over time, as expected in our framework, we don’t need to know the
details of the evaluation of the resonance energy starting from the
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fundamental parameters of the theory. To this purpose, it is enough
to consider that, whatever the expression of this energy is, it must
be built out of i) masses, ii) couplings (electro-weak and strong) and
iii) the true fundamental constants (the speed of light c, the Planck
constant �, and the Planck mass Mp). Working in units in which the
latter are set to 1 (reduced Planck units), all parameters of points
i) and ii) scale as a certain power of the age of the universe. As a
consequence, the resonance energy itself mainly scales as a power of
the age of the universe:

E ∼ aT −b . (5.4.7)

(More generically, it could be a polynomial: E ∼ a1T −b1 + a2T −b2 +
. . . + anT −bn. In this case, to the purpose of checking the agreement
with a bound, it is enough to look at the dominant term). We can
fix the exponent b by comparing the expression, evaluated using the
present-day age of the universe, with the value of the resonance, that
we take from [97]:

E ∼ aT −b = 0.0973 eV × 1.2 × 10−28 = 1.2 × 10−29MP . (5.4.8)

In order to solve the equation, we would need to know the coefficient
a, something we don’t. However, as long as we are just interested in a
rough estimate, it is reasonable to assume that, since this coefficient
mostly accounts for possible symmetry factors, it may affect the value
of the result for about no more than one order of magnitude. Inserting
the value T ∼ 5 × 1060M−1P for the age of the universe, we obtain:

b ∼ 1

2
, (5.4.9)

and finally:

|ΔE| ∼ 1

10
E ∼ 0.01 eV . (5.4.10)

over a time of two billion years. This is compatible with the Oklo
bound, eq. 5.4.6.

From the Oklo data one tries also to derive a bound on the adimen-
sional quantity

β ≡ GFm
2
p(c/h̄

3) . (5.4.11)
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In this case, our discussion is easier, because we know the scaling of all
the quantities involved 3. Once again, we have to deal with a quantity
that scales as a power of the age of the universe. At present time, we
have:

β ∼ T −bβ = 1.03 × 10−5 . (5.4.12)

Inserting the actual value of the age of the universe, we obtain bβ ∼ 1
12.

Over a time interval of around 1/5 of the age of the universe, this gives
a relative variation:

Δβ

β
∼ 0.017 , (5.4.13)

to be compared with the one quoted in ref. [97]:

|βOklo − βnow|
β

< 0.02 . (5.4.14)

Both results 5.4.10 and 5.4.13, although still within the allowed range
of values, seem to be quite close to the threshold, beyond which the
model is ruled out. One would therefore think that a slight refine-
ment on the measurement and derivation of these bounds could in a
near future decide whether it is still acceptable or definitely ruled out.
Things are not like that. Indeed, as we already stressed in several si-
milar cases, the entire derivation of bounds and constraints, involving
at any level various assumptions about the history of the universe and
therefore of its fundamental parameters, should be rediscussed within
the new theoretical framework: it doesn’t make much sense to com-
pare pieces of an argument, extracted from an analysis carried out
in a different theoretical framework, with different phenomenological
implications. To be explicit, in the case of the derivation of the Oklo
bounds, one should reconsider the entire derivation of absorption thre-
sholds and resonances. We should therefore better take into account
from the beginning the time variation of all masses, and in particular
the neutron and proton masses, as well as couplings. Perhaps a more

3We recall that GF/
√
2 = g2/8M2

W . Therefore, β = παm2
p/
√
2M2

W . For times
much higher than 1 in reduced Planck units, the proton mass can be assumed
to scale approximately like the mean mass scale 4.3.26.
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meaningful quantity is then not anymore the pure resonance shift, but
this quantity rescaled by the neutron mass. In this case, the effective
variation of interest for our test is not 5.4.10, but:

Δ(E/mn)

(E/mn)
≈ ΔT − 1

9

T − 1
9

∼ 0.02 , (5.4.15)

a variation one order of magnitude smaller than 5.4.10 (ΔE/E ∼ 0.1).
Analogous considerations apply also to the case of the second bound
5.4.13, basically equivalent to the nucleosynthesis bound.

5.4.0.3 The nucleosynthesis bound

Bounds derived from nucleosynthesis models are even more questio-
nable: they certainly make sense within a certain cosmological model,
but, precisely because of that, they cannot be simply translated into
a framework implying a rather different cosmological scenario. Once
again, the only anchor points on which we can rely are the few “pure”
experimental observations, to be interpreted in a consistent way in the
light of a different theory. The point of nucleosynthesis is that there is
a very narrow “window” of favourable conditions under which, out of
the initial hot plasma, our universe, with the known matter content,
has been formed. Of interest for us is the very stringent condition
about the temperature (and age of the universe) at which the amount
of neutrons in baryonic matter have been fixed. As soon as, owing
to a cooling down of the temperature, the weak interactions are no
more at equilibrium, the probability for a proton to transform into a
neutron is suppressed with respect to the probability of a neutron to
decay into a proton. Owing to their short life time, comparable to
the age of the universe at which the equilibrium is broken, basically
almost all neutrons rapidly decay into protons, except for those that
bound into 4He. Nucleosynthesis predicts a fraction of 4Helium and
Hydrogen baryon numbers (∼ 1/4) in the primordial universe, which
is in good agreement with experimental observations. The formula for
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the equilibrium of neutron/proton transitions is given by:

n

p
= e−Δm/kT ∼ 1 , (5.4.16)

where Δm = mn −mp. In the standard scenario, this mass difference
is a constant, and the temperature runs as the inverse of the age of the
universe. The equilibrium is broken at a temperature of around 0.8
MeV, when (n/p) � 1/7. In our framework too the temperature runs
as the inverse of the age of the universe, but the mass difference Δm
is not a constant: all masses run with time. At large times (T � 1 in
Planck units), we are in a regime in which we can use the arguments
of section 4.3.6, in order to conclude that, being the u and d quark
masses much lighter than the neutron mass scale, we can consider Δm
as a perturbation of m � mn. In this regime, the neutron-proton mass
difference is basically of the order of the constituent quarks mass dif-
ference, and we have reasons to expect that it also runs accordingly.
It would therefore seem that, in our case, going backwards in time,
the ratio (n/p) remains lower than in the standard case, and the equi-
librium 5.4.16 is attained at a temperature much higher. However,
to the purpose of determining the processes of the nucleosynthesis,
essential is not just the scaling of the equilibrium law of the neutron-
to-proton ratio, but also that of the mean life of the neutron. It is the
combined effect of these two quantities what determines the primor-
dial baryon composition. In the usual approach, the neutron mean life
is assumed to be constant. Being related to the neutron decay ampli-
tude, i.e. to the volume occupied by the neutron in the phase space,
in our framework this quantity too is not constant. In order to see
what in practice changes in our scenario with respect to the standard
one, instead of attempting to guess what the scaling behaviour of the
neutron mean life could be, we can proceed by considering, instead
of the pure running of the equilibrium equation, the reduced running
at fixed neutron mean life. Certainly the mean life is constant if the
neutron mass is constant. The quantity of interest for us is therefore
the scaling of the mass difference, as measured in units of the neutron
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mass itself. According to our considerations of above, we have:

Δmred(T ) ≡
Δm

mn
∼ T

p(u−d)

T pn , (5.4.17)

where p(u−d) and pn are exponents corresponding to the up-down quark
mass difference and to the neutron mass respectively. This running is
expected to hold not only at present time but also at a temperature
of ∼ 1 MeV, which is anyway much lower than the Planck scale. We
can therefore compare our prediction with the standard one by simply
considering the relative deviation of equation 5.4.16 from its standard
value, as obtained by replacing the constant mass difference Δm with
Δmred(T ):

n

p
= e−Δm/kT →

(
n

p

)
red

≡ e−m̄nΔmred(T )/kT , (5.4.18)

where m̄n is the fixed, time-independent present-day value of the neu-
tron mass. Therefore, in the standard case (n/p)red coincides with
(n/p). According to the mass values given in section 4.2, we have:

Δmred(T ) ≈ T −
1
24 . (5.4.19)

Considering that the time variation between the point Tf of the brea-
king of equilibrium and the present day is of the order of the age of
the universe itself, ΔT ≡ T − Tf ∼ T , we obtain approximately that
the integral variation of x ≡ Δmred(T ) over this time interval is:

Δx ∼ 1

24
x . (5.4.20)

The “reduced value” of (n/p), (n/p)red, is now modified to:(
n

p

)
red.

:
1

7
→ ∼ 1

7

(
1 − ln 7

24

)
≈ 0.131 . (5.4.21)

This value leads to a ratio X4 of helium to Hydrogen of around:

X4 ∼ 0.232 , (5.4.22)

still in excellent agreement with what expected on the basis of today’s
most precise determinations (for a list of results and references, see
ref. [63]).
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evolution

Palaeontological observations seem to indicate that the evolution of
life would not occur as a smooth, continuous progression, but would
be characterized by relatively short periods of “sudden” mutation, se-
parated by longer, more or less stable periods. For instance, it has
been observed that the species of hominids, from primates to Homo
sapiens, is characterized by an evolution toward an increasing cranio-
facial contraction, which makes possible an expansion of the volume
of the brain, and appears to take place at specific periods in which a
big step forward is made, followed by longer periods in which this kind
of mutagenesis seems to be “at rest” [98]. This progressing through
“steps” seems in some way to call into question certain aspects of
the (neo-)Darwinian theory of the evolution through natural selec-
tion. Why should not all the possible directions, i.e. all the possible
mutations, be statistically generated at the same time? Why should
then evolution not be a continuous process? This has even induced to
talk about “ontogenesis” for this kind of mutations, and mathemati-
cal models have been investigated, in order to explain this behaviour
[99, 100, 101].

Of interest for us is here the biophysical dynamics of evolution,
which seems to occur through a sequence of steps forward and rests,
and this not only with regard to the human species, but also more in
general to the big Eras of life on the Earth. In this chapter we dis-
cuss how this fits within our theoretical scenario. We have seen that,
during the cosmological evolution, all fundamental mass scales mi, as
well as the couplings of elementary particles αj, run as appropriate
roots of the (inverse) age of the universe. Although complex systems
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6 The phases of the natural evolution

(atoms, molecules) consist of several elementary particles bound toge-
ther in a complicated way, so that their mass scale is not just given
by the product of masses and couplings running as powers of the age
of the universe, since every such element has a power-law scaling, also
the mass and the energies of complex systems can be expressed as a
sum of powers of the age of the universe. On the large scale there is
therefore a dominant behaviour, which can always be reduced, up to
normalization coefficients, to a power-law dependence on the age of
the universe:

Ep ∼
1

T 1/p
+ O

(
1

T 1/q

)
, p > q > 1 . (6.0.1)

At our present time, the rate of variation of couplings, masses, and
energies, is very small, irrelevant for our experience of every day. Ho-
wever, it becomes significant as seen on a cosmological scale. But its
effect is appreciable also at “intermediate” scales, such as those of
the evolution of life, where it can show out in “fine-tuning” effects.
Among these are precisely the cases of natural evolution we are going
to discuss. Here we will discuss how the sequence of these evolutionary
steps, as well as the relatively short duration of the intervals of “rapid”
progress of the evolution, can be explained entirely within the laws of
molecular physics and the Darwinian theory of natural evolution.

6.1 The evolution of Primates

Let’s consider first the example referring to the most recent series
of evolutionary mutations: the evolution of primates along steps of
increasing cranio-facial contraction, summarized in figure 6.1. It is
clear that the duration of these periods increases as we go back in
time to earlier ages, although no simple mathematical relation seems
to relate them. Once expressed in units of the age of the universe, the
periods Tn of the primates-to-human history show a behaviour much
less unfamiliar. Indeed, as we are going to see, they approximately
arrange into a power series:

Tn ≈ k nq , (6.1.1)
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Figure 6.1: The steps of increasing cranio-facial contraction of homi-
nids, according to ref. [98], as measured in millions of years.
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6 The phases of the natural evolution

for some positive numbers k and q, 0 < q < 1, and n running on
the natural numbers. What produces this behaviour? The fact that
mutations seem to occur during a very short time, as compared to
the duration of the stable phases, recalls the typical width of a reso-
nance threshold in energy absorption processes. In a quantum system,
energy levels are quantized and in general discrete; this is true at least
as long as we consider a bound system and its binding energies, a
situation to which the DNA corresponds with good approximation.
Mutagenesis is a process produced by a change in the DNA structure.
At the molecular level, what happens is that, as a consequence of the
absorption of a certain amount of energy (e.g. radiation of a certain
frequency), protons and/or electrons “jump” to different positions,
and form new bonds. Let’s consider to expose the DNA to a certain
kind of radiation. The energy that hits the probe is quantized, and
is related to the frequency ν, or the wavelength λ, of the radiation,
according to the Compton law:

Esource = hν =
c

λ
. (6.1.2)

Also the energy levels of the target molecule are expected to be quan-
tized. The typical energies of mutagenetic processes are the object
of several investigations, based on approximations of the DNA se-
quence as a crystal, or in general a system bound in a certain region
[102, 103, 104, 105]. In general, the absorption spectrum is discrete:

EDNA = {E(n)} , E(n) = knE0 , (6.1.3)

where kn is a certain coefficient and n runs on (a subset of) the natural
numbers. The radiation energy 6.1.2 can be absorbed by the DNA
molecule, and produce a change in its structure, only if it corresponds
to one of the discrete levels of its spectrum. In this case, we have a
resonance of the absorption probability:

Esource|res. ∼= E(n)target . (6.1.4)

A series of evolutionary steps, such as those of the progressive cranio-
facial contraction, corresponds to a specific change of the DNA struc-
ture, possibly induced by a change of one or more proton bonds, that
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6.1 The evolution of Primates

could be a transition of the kind considered in ref. [102], or something
similar. Which molecular bonds do correspond to a certain degree of
contraction is not known. However, it is not unreasonable to think that
the amount of contraction is related to the number of bonds which un-
derwent an “elementary” transition in the DNA molecule. Let’s make
the hypothesis that this is indeed the case. A larger degree of mutation
would then correspond to a larger number of elementary transitions.
In order to induce one such change, an “elementary step” A, the DNA
molecule must absorb an energy:

EA = E(nA) = knAE0 , (6.1.5)

for some quantum number n = nA. Let’s suppose that this is precisely
induced by the absorption of energy coming from an external source of
radiation. In order to induce the evolutionary mutation under consi-
deration, we must therefore have:

Esource|res. ∼= E(nA)target . (6.1.6)

A discrete series of resonance points along the time axis is only possible
if the two energy scales run as independent functions of time. The
amount of change at any such point should be related to the time
width of the resonance.

As anticipated, let’s suppose mutations are induced by radiation.
There are several candidates for a source of radiation able to induce
genetic mutations: the UV radiation, mostly coming from solar light,
the natural radioactivity, and cosmic rays. However, X and cosmic
rays are extremely energetic, and the mutations they induce are in
general not “evolutionary” but “destructive”. The radiation that in
practice can induce molecular changes leading to new forms of life, not
just to the death of an organism, is the ultra-violet radiation, and per-
haps an even less energetic one. Therefore, the energy spectrum of the
source should basically be the one of the electronic transitions, giving
rise to the known atomic emission spectra (in the case of hydrogen,
the Lyman series etc...).
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6 The phases of the natural evolution

During the cosmological evolution, the spectrum and the amount of
this type of radiation have changed, according to the evolution of the
stars and in particular of the solar system. However, for what mat-
ters our problem, restricted to a very recent era of the evolution of
the universe, it can be considered a sufficiently regular background 1.
Were the energy levels of the source, and of the target DNA, constant
(as they are normally assumed to be), the mutation process would be
progressive: the elementary transition would be constantly related to
a certain spectral line, or a bunch of spectral lines. The rate of ab-
sorption would be proportional to the intensity of the source (almost
constant), leading to a statistically continuous increase of the number
of changed bonds in the DNA molecule. We would therefore observe
a continuous evolution of primates. Since both the emitted radia-
tion and the ground energy scale of the DNA bonds are functions of
elementary energy scales and couplings, in our theoretical framework
they have a dominant behaviour given as in 6.0.1. This means that,
in first approximation, they run as two independent powers of the age
of the universe:

Esource ≈
ks
T ps ; (6.1.7)

Etarget ≈
kt
T pt , (6.1.8)

where ps, pt are real numbers 0 < (ps, pt) < 1, and ks, kt are coef-
ficients that collect the contribution of symmetry factors and encode
the dependence on the quantum numbers labelling the energy levels.
At a generic time T , the radiated energy doesn’t correspond to any
energy gap of the target. Let’s suppose that at a certain age Ti we
have a resonance with some spectral line of the source:

E(nA) ≈ Esource(n,m) , (6.1.9)

1We refer here to the frequencies of the spectrum, and in general the cosmological
running of the fundamental physical parameters. We don’t consider variations
due, for instance, to the solar activity, that don’t affect such properties. We will
comment about these effects in section 6.3.
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6.1 The evolution of Primates

where (n,m) is a shorthand notation that indicates the quantum num-
bers of the two energy levels involved in the transition producing the
radiation in the source. When 6.1.9 is satisfied, energy can be ab-
sorbed, making possible for the system to undergo a class of genetic
mutations, corresponding to new possible DNA molecular changes.
Statistically, in a short time, corresponding to the width of the re-
sonance, all possible mutations are tried out. There is therefore not
necessarily a unique kind of mutation. The maximal transition proba-
bility is attained at the peak of the resonance. Out of this point, the
probability rapidly decays, at a speed depending on the characteristic
width of emission and absorption spectra. After the time window of
the resonance, these transitions are no more possible (i.e. they are
extremely suppressed), and the rate of the mutagenesis process drops
down dramatically. Natural selection will then decide which one(s)
among all the mutations will survive. The system will then “stabi-
lize” until a new resonance threshold opens up. Suppose this was a
facial bone contraction enabling a larger brain volume. We get a cer-
tain amount of contraction-inducing transitions (i.e. a certain amount
of changed DNA bonds), depending on the width of the resonance
window. Then the process stops till the new resonance. This occurs
when the same kind of molecular transitions are induced by the next
spectral line that turns out to meet the condition 6.1.9. If a larger
brain is a mutation favoured by natural selection also at later times,
then, at the next resonance time, Nature will favour again the same
kind of transition; the suspended process of contraction will be resu-
med and progress for another while, leading to the birth of species of
primates with a still larger brain.

We can give a rough estimate of the separation between subsequent
resonance times. First of all, let’s see what is the order of magnitude
we should expect for the exponents ps and pt of eqs. 6.1.7 and 6.1.8.
For the emission scale, under the hypothesis of an atomic origin of the
radiation, whatever is the source of radiation in first approximation
the atomic energy levels are given as some numbers multiplied by the
Rydberg constant R. This is strictly true only in the simplest case,
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the hydrogen atom, in which case the energy levels are given by:

Esource(n,m) = hν = R

(
1

m2
− 1

n2

)
, (6.1.10)

where:
R ≈ R∞ = meα

2/4π (× c/�) , (6.1.11)

whereme is the electron mass and α the fine-structure constant (in our
framework, neither of them is constant). The highest energy, ultra-
violet series, is obtained with m = 1 (Lyman series). More in general,
the energy levels have more complicated expressions, and, for heavy
elements with many electrons, one has to consider also relativistic
effects scaling as meα

4. However, as long as we are interested in a
rough estimate, we will assume here that the energy levels of our
source have an effective approximate hydrogen-like spectrum. This
hypothesis is on the other hand supported by the consideration that
hydrogen is the most common element in the universe. We expect
therefore that the energy levels behave approximately as the Lyman
series:

Esource ≈ R∞

(
1− 1

n2

)
. (6.1.12)

For the target DNA molecule, the energy levels of interest for us are
not those corresponding to a transition among the positions of the
electrons but those of the protons (see for instance refs. [102, 106]). A
typical dominant term of DNA energies could then be something like
Etarget

0 ≈ mpα
2. Therefore, although we don’t know the exact details

of the system, we can reasonably assume that the DNA energy, Etarget,
is above and runs slower than the energy of the cosmic source.

According to the results of chapter 4, both the electron mass and
the electric charge (the fine-structure constant α) run as positive roots
of the inverse of the age of the universe. This means that the Rydberg
constant too scales as a certain root of the age of the universe. At
sufficiently large times as compared to the Planck length (as is the
case of the evolution of life), also the proton mass roughly scales as a
root of the age of the universe. With reference to equations 6.1.7 and
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6.1.8, we can therefore identify:

1

T ps ∼ R∞ = R∞(T ) ≡ E0
source(T ) ; (6.1.13)

1

T pt ∼ E0
target(T ) . (6.1.14)

The resonance condition 6.1.9 at a time Ti can be written as:

T ps−pti ≈ knA
×

(
1− 1

n2i

)
, (6.1.15)

where, according to our previous considerations, ps > pt. Since as time
goes by the energy scale of the source becomes smaller and smaller as
compared to the DNA energy scale, subsequent matchings of energies
occur by jumping to higher energy levels of the source, therefore to-
ward higher n. Expression 6.1.15 neglects however the fact that, after
the DNA sequence undergoes a step of mutation, its energy levels are
no more the original ones: a different structure implies in general a
different spectrum of energies. At this stage, we are not able to quan-
tify this phenomenon, however we can expect that, since the natural
evolution occurs towards a higher degree of complexity characterized
by an overall higher energy, the new spectrum of energy levels consists
in general of a finer pattern of absorption bands running at a higher
scale. The new matching point with a higher energy level of the source
should occur therefore earlier than what 6.1.15 predicts. As a matter
of fact, this should lead to a shortening of the time elapse between sub-
sequent resonance points, as compared to what predicted by 6.1.15.
Moreover, as long as the density of energy levels increases, we must
expect also an increase of the probability of overlapping of subsequent
resonances. After a certain time, the progression of discrete steps
should then effectively “saturate” to a continuum.

We will test hour hypothesis by working out the sequence of time
intervals by solving the equation 6.1.15 for ni = ns, ni+1 = ns + 1,
ni+2 = ns + 2, . . ., ns being a typical point in the hydrogen series of
the source. Let’s introduce q ≡ 1/(pt − ps). Clearly, q > 1. We can
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then write equation 6.1.15 as:

Ti ≈
[
knA
×

(
1− 1

n2i

)]q
. (6.1.16)

In order to verify our hypothesis, we fit equation 6.1.16 over five points
in the history of the universe, corresponding to the turning periods
in which mutagenesis has produced the evolution of the human spe-
cies from the Australopithecus to the Homo sapiens, illustrated in
figure 6.1 of page 233. For the age of the universe, we use the value
obtained in section 4.3.2.5, namely:

T = 1.262028× 1010 yr = 5.038816× 1060M−1P . (6.1.17)

In order to get rid of big numbers and constant parameters, we plot
therefore the quantity:

y(x) ≡ T	+xT	
, (6.1.18)

for the five values from “Simians” to “Sapiens” as given in figure 6.1 2.
From expression 6.1.16 we obtain:

y(N) =
Ti+N
Ti
∼=

[
1− 1

(ni+N)2

1− 1
n2
i

]q
. (6.1.19)

For mass and energy scales ranging at present time from the meV to
the keV scale, the exponents ps and pt have typical values in the range
∼ [ 3.510 ,

3
10 ]. Therefore, q � 1. Limiting the analysis to the first values

of N , namely N = 1, 2, 3, 4, 5, 6, we can assume that N 
 ni. Under
these conditions, expression 6.1.19 can be approximated by:

y(N) ∼ N c , N = 1, 2, 3 . . . (6.1.20)

for some constant c. The small spacing of the periods, Ti+1 − Ti,
as compared to the age of the universe, tells us that c 
 1. This

2We exclude the edge value corresponding to the Prosimians, on which we will
comment later.
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approximation is valid as long as we can write:

N ≈
[
1− 1

(ns+Ñ)2

1− 1
n2
s

] q
c

, Ñ ≡ ± (N − 1) , (6.1.21)

where we have shifted the value of N on the r.h.s. to Ñ = (N − 1) in
order to account for the fact that the point N = 1 of the interpolation
corresponds to the point Ñ = 0 on the r.h.s. For ns sufficiently large
we can expand the r.h.s. of 6.1.21 as:[

1− 1
(ns+Ñ)2

1− 1
n2
s

] q
c

≈

⎡⎣1 +
2Ñ

n3s
+ O

⎛⎝ 1

n2s
×
(
Ñ

ns

)2
⎞⎠ . . .

⎤⎦
q
c

. (6.1.22)

By keeping just the first two terms of the expansion, we have a bino-
mial raised to the power q/c, and we obtain:

N ≈ 1 +
(q
c

) 2Ñ

n3s
+ . . . , (6.1.23)

where the neglected terms receive a contribution from what we neglec-
ted in 6.1.22, of order:

∼ O

⎡⎣( Ñ
n2s

)2
⎤⎦ ; (6.1.24)

and from the higher order terms in the binomial expansion:

∼ O

⎡⎣(2Ñ

n3s

)2
⎤⎦ . (6.1.25)

Equation 6.1.23 is approximately solved by:

ns ∼
(
2q

c

)1/3

. (6.1.26)
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Notice that this kind of approximation may work also for atomic se-
quences other than the Lyman series. For a generic 1/m in expres-
sion 6.1.10 we would obtain an expression analogous to 6.1.23, simply
with rescaled quantities: n → n/m, Ñ → Ñ/m, resulting in a solu-
tion:

ns ∼
(
2m2q

c

)1/3

. (6.1.27)

Therefore, we don’t really need to assume that the energies of the
source correspond to the Lyman series.

A similar behaviour is obtained also if we consider that the energy
jump occurs between the energy levels of the target. In fact, the
power-law behaviour 6.1.20 is basically due to the power-law scaling
of the ratio of the basic scales E0

source/E
0
target, and the fact that within

a certain range the quantum energy levels can be approximated by a
simple harmonic oscillator-like expression E(n) ≈ nE0. A quantum
system in a box approximately corresponds to a three-dimensional har-
monic oscillator. In the case of DNA, we can suppose that it roughly
corresponds to a composite system of many harmonic oscillators. In
this way, at the first order the coefficient kn in 6.1.3 should be given
by:

kn ≈ (nt + n0)k0 , (6.1.28)

where k0 is a scaling factor and n0 is the ground energy, a quantum
Casimir effect that, if in the case of a one-dimensional harmonic oscil-
lator is 1/2, in a complex system consisting of many harmonic oscil-
lators can be a much larger number. If this is the case, then, keeping
fixed the quantum numbers of the energy of the source, a power-law
sequence like 6.1.20 is obtained as long as we can approximate:(

nt + Ñ + n0
nt + n0

) q
c

≈ 1 +
(q
c

) Ñ

nt + n0
+ O

(
Ñ

nt + n0

)2

, (6.1.29)

by retaining only the first two terms, and identifying this time:

q

c
∼ nt + n0 , (6.1.30)

242



6.1 The evolution of Primates

for some nt. This is certainly possible, if the ground number n0 is
sufficiently large. In practice, the fact of having a sequence of the
type 6.1.20 is related to the possibility of making a linear approxi-
mation of the spacing of the energy levels, either of the source or of
the target, or both of them, into steps of equal separation, at fixed
fundamental energy scale. Once the running of the latter is taken into
account, this translates into a series of the type 6.1.1.

For what we have just discussed, it is reasonable to fit the ratios
6.1.19, referred to the five last steps of the evolution of primates, with
the curve:

y = a xc . (6.1.31)

To stay more general, what we indeed fit is the curve:

y = a(x− b)c . (6.1.32)

By consistency, we expect to find a fit for b
 1. Using the value 6.1.17
for the age of the universe, the values Ti of the time periods illustrated
in figure 6.1 can be approximated by:

T1 ≈ 1.256028× 1010 yr ;

T2 ≈ 1.258028× 1010 yr ;

T3 ≈ 1.260028× 1010 yr ;

T4 ≈ 1.261328× 1010 yr ;

T5 ≈ 1.261778× 1010 yr ;

T6 ≈ 1.262018× 1010 yr ;

T7 ≈ 1.262028× 1010 yr . (6.1.33)

Their ratios are therefore:

y(1) = T2/T1 ≈ 1.001592 ;

y(2) = T3/T1 ≈ 1.003185 ;

y(3) = T4/T1 ≈ 1.004220 ;

y(4) = T5/T1 ≈ 1.004578 ;

y(5) = T6/T1 ≈ 1.004769 ;

y(6) = T7/T1 ≈ 1.004777 . (6.1.34)
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Consistently with our previous discussion, better than looking for an
overall good fit, we try to see for which value of the parameters the first
experimental steps are reproduced: later steps should be the more and
more affected by the effects of the change in the DNA lattice structure,
and by the thickening of the band spectrum in the radiating source.
The results are shown in figure 6.2. Indeed, the agreement is obtained
for:

a = 1.001623372 ;

b = 0.020001238 ; (6.1.35)

c = 0.002345118× 10−3 .

These values are consistent with our hypothesis of having a close to 1,
b and c 
 1. As one can see, in the last steps the disagreement bet-
ween experimental observations and the interpolation curve increases.
Indeed, it seems that our present time falls in a phase in which the
sequence of steps is close to saturation of the discrete series, at the
transition to a phase of overlapping resonances. A higher density of
energy levels implies that the series progresses toward configurations
that get closer and closer to each other. We expect this to imply that
also the changes induced by mutagenesis become the more and more
frequent and small.

6.2 The great Eras of life: the Paleozoic, Mesozoic and Ce-
nozoic steps

We expect a similar mechanism to be at the ground of evolutionary
processes that don’t refer only to the primates but to any form of life.
A problem is to identify which sets of mutations can be grouped into
classes corresponding to the same “basic” transition, and therefore
can be arranged along the same series of neighbouring resonances.
We can imagine that the evolutionary processes can be distinguished
into several classes, according to the kind of molecular transitions they
are controlled by. For instance, by looking at figure 6.3, one can figure
out that the big subdivision into Paleozoic, Mesozoic and Cenozoic
Eras of the natural evolution should not mix with the “sub-eras”, the
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Figure 6.2: The steps of evolution of hominids. On the Y axis
are reported the ratios of time periods, as derived
from 6.1.33 and given in 6.1.34. The steps on the X
axis range from the Simians(2)/Prosimians(1) to Present
Time(7)/Prosimians(1).
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Periods such as the Triassic, the Jurassic etc..., although these periods
not necessarily fit into subclasses of the main class of transition. This
means that not necessarily “Triassic, Jurassic and Cretaceous” belong
to the same main class, distinguished from the class formed by the set
“Cambrian, Ordovician, Silurian, Devonian, Carboniferous, Permian”.
The beginning of the first era, the Paleozoic Era, is the time when
most of the major groups of animals first appear in the fossil record,
and is sometimes called the ”Cambrian Explosion”, because of the
relatively short time over which this diversity of forms appeared. The
Triassic-Permian extinction event too is something that took place in
a relative short interval of time. Lastly, the end of the Mesozoic era is
characterized by the sudden disappearance of dinosaurs. These facts
strongly suggest that also the beginning and the end of these eras were
marked by a rapid evolution, as due to the opening of new resonance
thresholds allowing genetic mutation. We may ask whether also these
big eras of the evolution of life roughly follow a power-law sequence.

In order to perform a similar analysis for the Paleozoic-Mesozoic-
Cenozoic sequence, we need at least four time points, out of which to
derive three ratios. From figure 6.3 we see that we are forced to include
also our present time. This is somehow even more questionable than
in the previous analysis, because we don’t know whether we are now at
the turning point of a new era. Our analysis will therefore be affected
by even larger uncertainties than our previous was. Nevertheless, let
us consider the transition times given by the beginning of Paleozoic
(541× 106 yr from present time), Mesozoic (252× 106 yr from present
time), Cenozoic (66× 106 yr from present time). When expressed in
terms of the age of the universe, we obtain:

T1 ≈ 1.207928× 1010 yr ;

T2 ≈ 1.236828× 1010 yr ;

T3 ≈ 1.255428× 1010 yr ;

T3 ≈ 1.262018× 1010 yr , (6.2.1)

where we have added as fourth time the age of the universe, to account
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6 The phases of the natural evolution

for our present time. From these we obtain the ratios:

T2/1 = 1.023925× 1010 yr ;

T3/1 = 1.039324× 1010 yr ;

T4/1 = 1.044787× 1010 yr . (6.2.2)

By proceeding in the same way as in section 6.1, we plot the values
y(x). The coefficient of the curve 6.1.31 are now:

a = 1.024393617 ;

b = 0.021372812 ; (6.2.3)

c = 0.021204637 ,

The curve is plotted in figure 6.2. Although the values of the interpo-
lation coefficients are only approximately indicative, it is remarkable
that the coefficient c differs from the c of section 6.1 by one order of
magnitude. This value is higher than the statistical uncertainty due
to the artifacts of the interpolation algorithm. The difference between
the two coefficients is therefore something real, and signals that we are
in the presence of absorption resonances corresponding to a different
series and power law. This on the other hand is precisely what we
should expect from genetic mutations of another kind: in this case,
they would in general correspond to different DNA transition energies.

Our analysis suggests that also the three big eras of the evolution,
the Paleozoic, Mesozoic and Cenozoic, are compatible with the inter-
pretation as series of resonances. We may then ask whether the disap-
pearance of dinosaurs, the event that marks the end of the Mesozoic
era, could be ascribed to the appearance of more evolved competitors,
perhaps coming from a mutation of already existing species. Palaeon-
tological observations are in fact compatible with and extinction time
that, although short when compared to the duration of an entire geo-
logic era, amount to several thousand of years 3, a transition time
perhaps longer than what we would have expected if it was produced
by some “external” catastrophic event, and probably better suits to

3see for instance ref. [107].
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Figure 6.4: The ratios of time steps, observed and interpolated (dotted
line), corresponding to figure 6.3.
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6 The phases of the natural evolution

a typical resonance width. We know that eventually mammals pre-
vailed, although they already existed well before; could it be that a
slight mutation finally gave them the necessary advantage to prevail
over dinosaurs?

6.3 Remarks

At this point, several considerations are in order:

• Two different classes of the evolution, namely the one of the big
eras of life on the earth, and the one of the primates, seem to ar-
range into sequences corresponding to DNA resonance energies. At
our present state of knowledge, we cannot decide out of any doubt
what distinguishes the sequence of the human evolution from the lar-
ger evolutionary scale of the three main eras of figure 6.3. In the case
of the evolution of primates, we assumed that the same kind of mole-
cular transition acts at any time there is a resonance condition. The
amount of progress in the evolution, according to [98] proportional to
the amount of cranio-facial contraction, would then be proportional to
the number of occurred molecular transitions in the DNA. A priori it
is not clear whether also in the case of the sequence of the big eras of
figure 6.3, a unique kind of mutation is at work during all the turning
periods. The seek for an answer could lead to a deeper understan-
ding of the mechanisms of DNA transitions and their relation to the
evolution.

• Obviously, different molecular transitions lead to different muta-
tions. Therefore, the entire history of the evolution cannot fit into a
single series. However, in general not necessarily all the steps of the
evolution can be ordered into some series. A simple look at eras, ages
and periods, shows that there are many “irregular” periods, which ap-
parently cannot be arranged into any ordered sequence. Indeed, there
can be a huge variety of combinations of DNA and source energy le-
vels, leading to different mutations. Owing to the superposition of
different mutations and different periods, the history of the evolution
may not look so well ordered. It remains however a key point that
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these transitions occur at “discrete” points of the time axis, a feature
that naturally fits with our scenario of time-running energy scales.

• The time spread of a mutation period does not depend only on
the width of a resonance, but also on the fact that natural radiation
is not “coherent”, it has a certain spread of frequencies.

• The main source of UV radiation coming to the earth is the sun.
Its activity is not constant; however, the solar phases involve the
amount of produced radiation, not its being in resonance or not. As
a consequence, under the hypothesis that the major cause of evolutio-
nary mutagenesis is the solar light, what we expect is that variations
of the solar activity affect the evolution process only if they fall within
the time window of some resonance; in this case the mutation process
can be accelerated (or slowed down).

• For simplicity, we did not consider mutagenesis of plants. In
principle, these too could (should?) follow similar laws, and perhaps
the full story about evolution of species is the result of an interac-
tion/interference of all these phenomena.

All these considerations make sense only within a scenario in which,
like in our case, the energy scales depend on time. Only in this case
we obtain a discrete sequence of “resonance” periods. Otherwise, the
full spectrum of emission from natural sources, as well as the complete
spectrum of molecular energy levels, would be fixed and constant all
along the history. The conditions for a genetic mutation would then
be always the same, and mutations would be statistically generated
without interruption. A step-wise progress of the evolution would then
require completely different explanations.

When expressed in terms of the time separating these periods from
our present time, as in figures 6.1 and 6.3, the power-law scaling, re-
lation 6.1.1, is not explicit. The situation is reminiscent of the one of
the law of a perfect gas, PV = nRT , in which the proportionality bet-
ween pressure/volume and the temperature is only unveiled when the
latter is expressed in terms of the absolute Kelvin scale. Analogously,
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6 The phases of the natural evolution

here in order to see the relation we must express the time periods in
terms of the absolute age of the universe.

Despite the high degree of approximation, our analysis suggests that
the main steps are something “regular” and absolutely “programmed”.
Not by something external to the rules of natural evolution and selec-
tion; simply, something intrinsic of the fundamental laws of physics.
The universe is expected to evolve toward more entropic configura-
tions, in which the minimal energy step, which is also the size of the
“unit cell” of the phase space, decreases. This agrees with the fact
that the duration of the various phases decreases, making the more
and more frequent the transition points. It however also means that
the changes, the mutations, which are to be expected, should become
less dramatic: more frequent, but also in the average smaller, steps.
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7 High-temperature

superconductivity

In this theoretical framework, the Heisenberg’s uncertainty is the bet-
ter satisfied as an equality the more is the geometry of the physical
system “smooth”. The energy uncertainty is bounded from below
by the uncertainty of the most “classical” geometry, the one of a 3-
sphere of radius cΔt, and energy content ∼

(
M2

Plc
4/�

)
Δt (this is also

the basic geometry of the universe itself, see chapter 2). Indeed, in
this theoretical scenario we can say that the fact of being also gra-
vity quantized reflects in the fact that the degree of non-classicity of a
physical system turns out to depend on its geometry, intended in the
general relativistic sense of space distribution of energy. More complex
quantum systems show a higher degree of quantum delocalization.

Quite a few physical systems look almost like a 3-sphere with al-
most the energy density of a black-hole. But, as long as we look at
sufficiently extended bodies with a big mass, the uncertainty in po-
sition and momentum is negligible, and so are also the differences
between the usual approach to quantum mechanics and our theore-
tical framework. As we move towards the atomic, and subatomic,
scale, the difference between our theoretical framework and the usual
approach becomes relevant. Superconductors are typical systems in
which this phenomenon becomes critical and evident. These are ma-
terials that, although in themselves can be of huge extension, we are
going to probe in their small scale properties. And, the more, by
probes, the electrons, in a rather non-classical regime, such as the
collective Cooper-pairs wave functions close to their ground energy.
That is, where energy-momentum/time-position uncertainties play a
relevant role, and where therefore quantum gravity effects show up
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more evidently. Apparently, this contradicts the popular idea that
quantum gravity should become relevant only at the Planck scale.

7.1 Quantum gravity and superconductors

The phenomenon of superconductivity is explained in its grounds as
due to the formation of pairs of electrons, that, behaving thereby
“collectively” as bosons, can fulfill a narrow band of energy obeying
to Bose-Einstein statistics. In other words, there can be very many
within such a narrow band, so to produce a non negligible electric
current [108]. In the BCS argument, essential for the occurring of this
process is the existence of an attractive potential, attributed to the
phononic response of the atoms of metal under charge displacement
due to a motion of the electrons. This produces an energy gap Δ,
and it has been shown that at the critical temperature most of the
electrons pairs lie in an energy range of order Δ, at an energy which
lies a gap Δ above the Fermi energy. This at least in the most simple
formulation of the theory. More complicated structures of supercon-
ductors require modifications of this simple model, and eventually
also weaken the existence of an energy gap as an essential feature of
superconductivity, because there are conditions under which super-
conductivity exists even without an energy gap. We will not consi-
der here the details of these model modifications and adjustments,
which, as in any attempt to describe real, complex physical systems,
are somehow unavoidable. For what interests our present discussion,
it is important to consider that, whatever the derivation and the ap-
proximation introduced in order to reproduce a physical model can
be, superconductivity remains related to the existence of a sufficient
amount of electrons possessing a sufficient degree of non-locality. We
can summarize this by introducing a “critical length” ξ which, for
reasons that will become clear in the following, does not necessarily
coincide with the “coherence path” it is usually talked about in the
literature about superconductivity. For the time being, let us just as-
sume that, according to a certain mechanism, which can reasonably
be the one of phonon response of the BCS approach, Cooper’s pairs
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7.1 Quantum gravity and superconductors

do form and collect to a characteristic length higher than ξ when the
temperature is sufficiently low. It must be stressed that the distribu-
tion of electrons is not a mathematical step function. Step functions
are useful approximations introduced in practical computations. In
reality, it is a matter of statistics. Therefore, one should never forget
that, at any temperature, there will be a certain amount of pairs with
typical length below ξ, and a certain amount above ξ. The relative
amounts are a matter of temperature. If we call n the total number of
electrons and nS the number of electrons which are paired and with
typical length larger than ξ, we can define the critical temperature
Tc independently on the possible existence of an energy gap, just as
the temperature at which nS/n ≥ (nS/n)0, (nS/n)0 being a certain
well defined ratio, which does not need to be better specified. ξ is
therefore a mean quantity. In traditional quantum mechanics, where
gravity is switched off, ξ can only increase as a consequence of a higher
localization in the space of momenta: 〈ξ〉 ∼ �/Δp ∼ �vF/ΔE. In our
quantum gravity scenario, 〈ξ〉 depends instead also on the complexity
of the geometry of the system. We want to see how this comes about,
and how, as a consequence, the critical temperature too will turn out
to depend on the complexity of the geometry.

Let us consider the sum 2.1.16. It describes a universe “on shell”;
namely, the universe “as it is”. This means that there is no isolated
system (particle or complex system of any kind), i.e. not embedded
in its environment. In particular, there is no isolated system exis-
ting in a flat space. Not only the dominant geometry always contains
the ground curvature of the universe, but any geometry ψ involved
in the sum 2.1.16 is a distribution of E = T total energy degrees
of freedom along a target space. Any geometry describes therefore a
“whole universe”. If we want to consider just a particular system, we
must make an abstraction, and i) look at just a subset of the geome-
triess contributing to 2.1.16, ii) for any geometry of this subset, we
must restrict our attention to a subregion of space. There is here a
subtlety, because, in general, ψ does not describe a universe in three
dimensions. As we said, this is true only for the dominant geometries.
On the other hand, if it is true that the contribution of non-three
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7 High-temperature superconductivity

dimensional, less entropic geometries is precisely what makes of the
universe, and, in particular, of any subregion of it, a quantum system,
it is also true that, in the concrete cases we want to consider here, a
full bunch of these geometries, and precisely the most entropic ones,
describe an energy distribution in a three dimensional space. Other-
wise, we would not be able to talk of superconductors in the terms
we are used to, namely, as well identified and (macroscopically) lo-
calized materials in a three-dimensional space. The physical systems
we consider are therefore “at the border” between two descriptions:
not anymore completely classical, but not even absolutely remote in
the phase space, in order to completely escape the ordinary parame-
ters of our perception of a three-dimensional space-time, and therefore
of operational definition through a set of measurement and detection
rules and experiments.

Let us concentrate our attention on just a small part the universe,
a piece of superconducting material and, possibly, its close environ-
ment, with its atoms, electrons, magnetic fields etc., namely, all what
constitutes our “experiment”. Let us call E(sc) the energy of this por-
tion of the universe. Of course, E(sc) < E, the total energy of the
universe (indeed, obviously E(sc)≪ E). Let us consider the bunch of
geometries of the universe that contain our superconductor,

{
ψ(sc)

}
.

Of course, for what we said all the geometries contributing to 2.1.16
do contain also the portion of universe in which our superconductor
is placed. However, what we want to do here is to select the subset of
geometries that contribute in a non-trivial way to form up the shape of
the superconductor, not those that contribute, say, just for the ground
curvature of space.

When we measure the energy of our experiment, the quantity that
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we detect is a mean value of energy, 〈E(sc)〉, defined as 1:

〈E(sc)〉 =
1

Z

∫
ψ∈{ψ(sc)}

Dψ eS E(sc) . (7.1.1)

Let us consider how energy can be distributed in the space, in order to
form up our experiment of mean energy 〈E(sc)〉. According to 2.1.16,
the more a geometry is remote in the phase space, the less it weights
in the sum out of which we should compute the mean total energy of
the experiment. Since in a finite region of space we can arrange only a
finite amount of energy (we can put at most one unit of energy per each
unit of space, where units of energy are measured in terms of Planck
mass, units of space in terms of cells of Planck length size), in order
to get a certain amount of mean total energy 〈E(sc)〉 we must sum up
over a larger and larger number of geometries. The larger and larger,
the more and more remote the average geometry we want to describe.
Moreover, since in a finite region of space we can arrange only a finite
number of different distributions of energy, as we go further with the
remoteness, to sum up to the same fixed amount of local energy 〈E(sc)〉
we must include geometries ψ(sc), in which E(sc) is supported in larger
and larger space regions. In terms of traditional quantum mechanics,
this means that the wavefunctions are more and more spread out in
space.

As discussed in chapters 2 and 3, geometries can be classified accor-
ding to the (finite) symmetry group of the distribution of energy de-
grees of freedom in the target space they correspond to. Their weight
in 2.1.16 corresponds, by definition, to the number of times they occur
in the phase space, in turn given by the number of equivalent ways
they can be formed. The ratio of the weights in the phase space of
two geometries can be expressed as:

W (ψi)

W (ψj)
=
||Gi||
||Gj||

, (7.1.2)

1All this can be put on a formal ground, by introducing an appropriate operator
that, as is usual to do in the case of any generating functions, extracts from the
logarithm of 2.1.16 the energy of a space domain around our experiment, but we
don’t want to bother here the reader with formalisms, rather to give the insight
into the physical meaning of what we are doing.
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where Gi and Gj are the symmetry groups, and ||G|| indicates the
volume of the group. This means that the more symmetric a geometry
is, the higher is its weight in the phase space 2. If a geometry ψj
corresponds to a more broken symmetry group than a geometry ψi, it
will be more remote, more “peripherical” in the phase space.

Let us introduce the concept of mean weight of our experiment,

W (sc), and of mean volume of the symmetry, or volume ||G(sc)

〈ψ(sc)〉|| of
the symmetry group of the mean geometry 〈ψ(sc)〉 through:

〈W (sc)〉 =
1

Z

∫
ψ∈{ψ(sc)}

Dψ eS , (7.1.3)

and:

〈||G(sc)
i ||〉

〈||G(sc)
j ||〉

=
〈W (sc)

i 〉
〈W (sc)

j 〉
. (7.1.4)

Accordingly, we define the mean geometry 〈ψ(sc)〉 as the geometry for
which:

W
(
〈ψ(sc)〉

)
def
= 〈W (sc)〉 . (7.1.5)

Let us suppose we change the symmetry of the geometry of our super-
conductor, 〈ψ(sc)〉 → 〈ψ(sc)′〉, so that ||G(sc)|| → ||G(sc)′|| = 1

2||G(sc)||.
In order to build up the same amount of energy 〈E(sc)〉 we must consi-
der geometries that correspond to the distribution of a higher amount
of energy. How much more energy should we add, and how larger must
be the space support? Approximately we must consider twice as much
energy, implying that we must double the volume. Since superconduc-
tors are built-up in layers, the problem is basically one-dimensional.
If we indicate with x the coordinate of the axis orthogonal to the
two-dimensional layers, we have that, in order to maintain unchanged
the value of 〈E(sc)〉 and ||G(sc)′||, we need to consider distributions of
energy of extension two times as large along the coordinate x. The

2Remember that the basic definition of space is discrete. Therefore, one work
always with finite groups, for which Gi �= Gj ⇔ ||Gi|| �= ||Gj|| (see chapter 2).
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linear spread in space of wavefunctions is therefore inversely propor-
tional to the volume of the mean symmetry group:

〈Δx〉
〈Δx〉′ =

〈||G(sc)′||〉
〈||G(sc)||〉 . (7.1.6)

For any set of geometries with local symmetry group Gi, we may
think of Gi as the little group of symmetry surviving after quotienting
a larger group G through hi. If we have two sets of geometries, ψi and
ψj, obtained by quotientation from the same initial group: Gi = G/hi,
Gj = G/hj , we have:

W (ψi)

W (ψj)
=
||hj||
||hi||

. (7.1.7)

Passing from the generic ψi, ψj to ψ
(sc), ψ(sc)′, and introducing corres-

pondingly h(sc), h(sc)′ instead of hi, hj, we can write 7.1.6 as:

〈Δx〉
〈Δx〉′ =

〈||h(sc)||〉
〈||h(sc)′||〉 . (7.1.8)

The relation 7.1.8 has been derived by imposing that the contribution
of peripheral geometries to the mean energy 〈E(sc)〉 remains constant.
According to the definition and construction of the Heisenberg’s un-
certainty we gave in chapter 2, this relation tells us that 〈||h(sc)||〉 can
be viewed as an effective Planck constant:

〈Δx〉 × 〈Δp〉
〈Δx〉′ × 〈Δp〉 =

〈||h(sc)||〉
〈||h(sc)′||〉 ≡

heff
h′eff

. (7.1.9)

Up to an overall proportionality constant, which can be set to one, we
can therefore write the quantum gravity version of the Heisenberg’s
uncertainty as:

ΔxΔp ≥ 1

2
�eff , (7.1.10)

where �eff ≡ heff/2π is related to the symmetry of a geometry through
7.1.9, 7.1.8, 7.1.6 and 7.1.4. Since increasing ||h|| corresponds to in-
creasing the complexity of the geometry, things work as if, by increa-
sing the complexity of its structure, the system would become less and
less classical, more and more quantum mechanical.
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We have identified the critical temperature of superconductivity
Tc as the temperature at which a well defined portion of electronic-
bosonic states are delocalized at least as much as a critical length ξ. It
is not necessary here to go into the details of the actual computation
of Tc within a specific model. It is enough to know that it is obtained
by integrating over a statistical distribution of states, and that the
latter is expressed in terms of weights depending on E/kT . T can be
viewed as the unit of measure of E: everything depends in fact on the
ratio E/T , and a rescaling of E is compensated by a rescaling of the
temperature T while keeping fixed the ratio E/T . Let us consider once
again our example of the two geometries characterized respectively by
||G(sc)|| and ||G(sc)′|| = 1

2||G(sc)||. In the primed case, the same deloca-
lization in space as in the unprimed geometry corresponds to one-half
the unprimed energy. Since both energies are effectively “measured”
in units of T , instead of talking of half energy, we can speak of dou-
bling the temperature. From this example we learn that in 7.1.10 the
effective Planck constant can be viewed both as setting the scale of
length as compared to energy/momentum, or equivalently as setting
the scale of energy/momentum as compared to space, and time. The
relation 7.1.9 tells us therefore that, for more complex geometries, the
same amount of electrons with space delocalization ξ will be obtained
at a higher critical temperature, according to:

Tc(i)

Tc(j)
=

heff(i)

heff(j)
. (7.1.11)

In our theoretical framework, high critical temperatures show up as
the consequence of the fact that, as expressed in 7.1.8, in supercon-
ductors with more complex geometrical structure, wavefunctions have
a larger quantum uncertainty. In particular, keeping fixed all the
other parameters, they have a larger 〈ξ〉. Therefore, the condition
nS/n ≥ (nS/n)0 is satisfied at higher temperature.

We stress that the considerations about the introduction of an effec-
tive, geometry-dependent Planck constant concern the delocalization
of wave functions. Namely, the role the Planck constant plays in the
uncertainty relations, ΔxΔp ≥ h/4π, ΔtΔE ≥ h/4π, not the value of
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this constant as a conversion unit between energy and time, or space
and momentum, in contexts not related to the uncertainty relations 3.
For instance, the energy levels, as computed through the Schrödinger
equation, or a set of Schrödinger equations, out of a classical descrip-
tion of effective potentials, are computed using the ground value of
the Planck constant. On the other hand, once the energy eigenvalues
of a system are known, a geometry-dependent Planck constant must
be used, in order to obtain the effective spreading of wavefunctions
in a geometrically complex quantum system. To this regard, a consi-
deration about the size of characteristic lengths which are introduced
in the physics of superconductors, such as the coherence lengths ξ0,
ξ(T ), and the London penetration length λ, is in order. One could
have the impression that, as we are keeping fixed the critical delo-
calization of wavefunctions at the transition to the superconducting
phase, the entire classification about what are type I and what type II
superconductors, discriminated by the ratio λ/ξ0, has to be reconside-
red. Indeed, this is not true: in this scenario all the classical results to
this regard go through unchanged, because λ contains in its definition
the Planck constant. In other words, both lengths λ and ξ0 scale in
the same way, and, as long as it is a matter of working with effective
descriptions of superconductivity, such as for instance the Ginzburg-
Landau effective theory, one can safely ignore rescalings, together with
the grounds of a rescaling of the critical temperature.

3In other words, we could introduce a function of the geometry, which is set to
one for flat geometry (or, to better say, for the ground geometry of the universe,
corresponding to a curvature R of the order of the cosmological constant Λ):

ΔxΔp [ΔtΔE] ≥ h

4π
f(〈R〉) , f(〈R〉 = Λ) = 1 . (7.1.12)

In this way, the Planck constant remains formally invariant, while the ratios of
above are expressed as ratios of different values of the function f .
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7.2 Critical temperatures in various superconductors

In order to see up to what extent an approach based on our effective
quantum gravity scenario can be applied, we consider now various
examples of superconductors. The considerations of the previous sec-
tion give us a clue on the role played by the geometry of a superconduc-
tor in determining its critical temperature. However, the detection of
a regime of superconductivity is in general not a direct observation in
itself: this regime is stated after the observation of several properties,
such as for instance the magnetic properties. Magnetic effects play a
relevant role also in the generation of an effective resistivity. There-
fore, superconducting regime, and critical temperature in particular,
may be very sensitive to effects such as impurities, and in general
doping effects aimed to pin magnetic vortices. Also external condi-
tions such as pressure do play in general a significant role. However,
although strictly speaking also these conditions affect the geometry
of the physical system and therefore act also at the quantum gravity
level, in general these effects are of second order as compared to the
changes they produce in the dynamic magnetic properties or other
similar properties. Our investigation is therefore affected by a large
amount of imprecision, and must be taken more as the indication of a
tendency, than as a real precision test.

Low temperature superconductors are metals without a well defi-
ned structure. As mentioned in the introduction, in this case the
order of magnitude of the critical temperatures is well predicted by
BCS theory. Our concern will be with the “structured” configura-
tions, characterized by higher critical temperatures. According to our
previous discussion, in our approach we do not obtain an absolute
determination of critical temperatures, but only of their ratios, as a
function of the ratios of geometries. For our analysis, we will therefore
use the low BCS temperatures as a reference point. We will start with
mercury, which has a critical temperature around 4.2K. The reason
why we consider this element instead of other ones is that it allows a
simpler derivation of the ratio of weights, in the sense of 7.1.4, to the
next material we want to consider, NbTi.
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7.2.0.4 Hg → NbTi

As a first test of the idea let us consider NbTi, the first step above
Hg in the list of the table of page 290. In first approximation, the
structure of NbTi should correspond to a Z2 breaking of the symmetry
of Hg. This would be exactly true if Nb and Ti had the same mass and
properties. Indeed, we can ideally consider the symmetry breaking as
roughly occurring through the pattern:

80Hg
∼Z2−→ 2 41Nb

Z1×Z2−→ 41Nb + 22Ti + 22Ti//// , (7.2.1)

where Z1 acts, as identity, on the first 41Nb. This is somehow in
between Z2 and Z3: it has less symmetry than a Z2, but more than a
Z3, in that Nb looks like twice Ti, so that it ideally comes from the
recombination of a Z2 symmetry subgroup out of a breaking into three
Ti. The critical temperature of NbTi should therefore lie somehow
between 2 and 3 times the one of Hg: Tc(NbTi) ∼ (8.4 + 12.6)/2 ∼
10.5K. Indeed, the observed critical temperature lies around 10K.
Of course, our evaluation has to be taken only as a rough, indicative
estimate.

In passing from Hg to NbTi we have introduced a “weighted” brea-
king of the Hg molecular symmetry. The weight is precisely the mass
of the atoms into which the initial homogeneous energy distribution
breaks. This is justified by the fact that, in our theoretical framework,
the geometries ψ in 2.1.16 are distributions of energy along space. The
size of the mass of a particle depends on the weight the geometry (or
the set of geometries) in which this particle appears has in the phase
space of all the geometries. In turn, the weight of a geometry depends
on the symmetry of the energy distribution. Approximately, the lat-
ter is “measured” by the space gradient of energy. Roughly speaking
the higher is the density of energy gradient, the less homogeneous (=
less symmetric) is the energy distribution. This can be understood
as follows: let us consider a geometry, i.e. a particular distribution
of energy along space, in its fundamental definition, as given in chap-
ter 2, namely, as a map from a discrete space to a discrete space. At
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any time we move one energy unit (unit energy cell in the language
of chapter 2) from a position in the target space to a neighbouring
one, we modify one symmetry group factor. If we move just one cell
we increase (or decrease) the energy gradient by two units, and break
(restore) one “elementary” group factor. If we move another unit,
we increase (decrease) further the energy gradient by two units, and
act once again on another elementary group factor, and so on. The
amount of increase/decrease of the energy gradient is therefore pro-
portional to the factor of increase/reduction of the symmetry group of
the configuration. These considerations are true for the configurations
ψ entering in 2.1.16. However, owing to the properties of factorization
of the phase space, and assuming that such a factorization is a good
approximation when we want to “isolate” a local experiment such as
those we are considering, we can transfer these global considerations
also to the local description of superconductors. This implies neglec-
ting the “extremely peripheral” geometries, anyway contributing for a
minor correction, negligible for our present purposes. Therefore, ins-
tead of working with geometries as in 2.1.16, we work with “averaged”
geometries as in 7.1.5, considering that everything outside the portion
of universe we are testing remains unchanged. If we view geometries
through an isomorphic representation in terms of symmetry groups:

ψ ↔
∏
j

Gψ
j , (7.2.2)

passing through the decomposition into an external and local part of
the group: ∏

j

Gψ
j =

(∏
j

G
ψ (ext)
j

)
×
∏
j

G
ψ (local)
j , (7.2.3)

it becomes clear that each geometry ψα can be factorized as:

ψ = ψ(ext) × ψ(local) , (7.2.4)

where “local” and “ext” precisely mean respectively the part of the
geometry (or the corresponding symmetry group) describing the expe-
riment (superconductor and related environment), and the rest of the
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universe. We can translate these considerations in terms of weights.
Through the association:

〈ψ(sc)〉 ←→ 〈W (sc)〉 =
∫
ψ∈{ψ(sc)}

Dψ eS

(∏
i

G
ψ (ext)
i

∏
j

G
ψ (local)
j

)
,

(7.2.5)
(the label “(sc)” indicates the superconductor under consideration)
we can use the factorization 7.2.4 to first integrate over the external
part of every geometry. As long as the portion of universe represented
by our experiment is small as compared to the rest of the universe,
and isolated, in the sense that we can neglect the interaction of the
system with the rest of the universe, the local and the external part of
the geometries can be approximately treated as independent. Under
this approximation, also the measure of integration can be factorized:

Dψ −→ Dψ(ext) ×Dψ(local) . (7.2.6)

We can therefore write:

1

Z

∫
ψ∈{ψ(sc)}

Dψ eS

(∏
i

G
ψ (ext)
i

∏
j

G
ψ (local)
j

)
≈

〈
G(ext)

〉
× 〈G(local)〉 ,

(7.2.7)
which allows to associate to 〈ψ(sc)〉 a decomposition of weights:

〈ψ(sc)〉 → 〈W (sc)〉 ≈ 〈W (ext)〉 × 〈W (local)〉 . (7.2.8)

This decomposition allows us to reduce the analysis of symmetries
of geometries to just the crystal structure of our superconductors.
The more, since superconductivity occurs as a property related to
a characteristic length ξ, our considerations can be restricted to a
region of this extension. In general, it is enough to look at a scale
of order of the lattice length: the energy levels of the electrons are
given in terms of collective wave functions 4, and all quasi-particle
energies are measured in terms of the lattice length a, which sets

4For a review of these topics see for instance [109].
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therefore the effective length/energy scale. In particular, when the
energy gradient between neighbouring lattice periods is sufficiently
smooth, it is possible to restrict the analysis to one lattice period. This
is the case of the majority of the examples we are going to consider.
With a certain degree of approximation, we can therefore write:

〈W (local)〉 ∝ ≈
∫
a

|∇Ei|a . (7.2.9)

This expression must be compared with the correction to the electron
mass that in chapter 4 we referred to as quantum gravity corrections.
As discussed there, the term ∇E has the form of a quantum mecha-
nical correction in which energy depends on geometry as according to
the Einstein’s equations. 7.2.8 allows us to write then:

〈W (sc)〉j
〈W (sc)〉i

≈
∫
ai
|∇Ei|ai∫

aj
|∇Ej|aj

≈ heff(i)

heff(j)
≈ Tc(i)

Tc(j)
. (7.2.10)

Since we are talking of elements basically at rest, we can consider that
the major contribution to the energy, determining the geometry of a
configuration, comes from the rest energy, i.e. the mass. Therefore, to
make the computation easier, instead of the integral of energy gradient
we can consider the sum of the gradients of the mass distribution:∫

a

|∇xE|a ≈
(a)∑
k

|Δm(k)| . (7.2.11)

The ratios of critical temperatures between two such materials should
then approximately be:

Tc(i)

Tc(j)
∼

∑(ai)
k |Δm

(k)
i |∑(aj)

	 |Δm(	)
i |

. (7.2.12)

This expression will allow us to investigate complex lattice structures.
We stress that what matters is not simply the geometric lattice struc-
ture, with geometry intended as the space arrangement of atoms seen
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as massless geometric solids, but the space distribution of energies, in
the sense of general relativity. If in first approximation we neglect iso-
tope effects, in the purpose of comparing ratios of gradients, instead
of the mass we may just consider the atomic number Z. We will now
apply these considerations to the investigation of the next step in the
table of page 290, Nb3Sn.

7.2.0.5 Nb3Sn

In the case of NbTi, the atomic numbers Z(Nb) = 41 and Z(Ti) = 81
lead to: ∑

|Δm| = |41− 81| = 40 (NbTi) ; (7.2.13)

for Nb3Sn, Z(Nb) = 41 and Z(Sn) = 50 give:∑
|Δm| = |41× 3− 50| = 73 (Nb3Sn) ; (7.2.14)

The ratio of the sums of mass gradients of Nb3Sn to NbTi is therefore
1.825, that, from 7.2.12 and Tc(NbTi) ∼ 10K should lead to some 18-
19K for the Nb3Sn critical temperature. The observed one is around
18K.

7.2.1 High-temperature superconductors

Although more complex, high-temperature superconductors are struc-
tured in layers, with a lattice structure that basically develops only
along one coordinate. Their analysis is therefore, in first approxima-
tion, relatively simple, at least as long as one neglects the doping of
certain sites with other elements. This introduces a further symmetry
breaking that, in principle, leads to an enhancement of the estima-
ted critical temperature. This operation may be considered somehow
as a “built-in” ground effect, which underlies the properties of any
one of these materials, and as such provides a systematic error, that
can be observed in the general underestimate of the critical tempe-
rature. However, as doping varies from material to material, this
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further symmetry breaking cannot simply be “subtracted out” as a
constant, universal effect: it introduces a further factor of uncertainty
and approximation in our calculations. Our results should therefore
be taken more for their capability to catch the main behaviour, than
as an attempt to really provide a fine evaluation of the exact critical
temperature. As a matter of fact, our estimates fall anyway within an
error of at most 15% from the experimental observations.

7.2.1.1 LaOFeAs and SmOFeAs

For the group of iron-based superconductors we consider LaOFeAs
and SmOFeAs. The crystal structure of LaOFeAs is arranged as a
stack of layers in sequence (As) (Fe) (As) (La) (O) (La) etc. The one
of SmOFeAs as a sequence of (As) (Fe) (As) (Sm) (O) (Sm) (see [110],
[111], and [112]). The atomic numbers Z(La) = 57, Z(O) = 8, Z(Fe)
= 26, Z(As) = 33 lead to:∑

|Δm| = 2|m(As)−m(Fe)|
+|m(La)−m(As)|+ 2|m(La)−m(O)|

+|m(La)−m(As)|
= 2|33− 26|+ |57− 33|+ 2|57− 8|+ |57− 33|
= 14 + 24 + 98 + 24 = 160

(LaOFeAs) ; (7.2.15)

Z(Sm) = 62, Z(O) = 8, Z(Fe) = 26, Z(As) = 33 lead to:∑
|Δm| = 2|m(As)−m(Fe)|

+|m(Sm)−m(As)|+ 2|m(Sm)−m(O)|
+|m(Sm)−m(As)|

= 2|33− 26|+ |62− 33|+ 2|62− 8|+ |62− 33|
= 14 + 29 + 108 + 29 = 180

(SmOFeAs) ; (7.2.16)

This gives as critical temperatures 42K and 47K respectively. The
observed ones are 44K and 57K.
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7.2.1.2 YBCO

We consider now the yttrium barium calcium copper oxide (YBCO)
[113]. This material superconducts in its orthorhombic form. It is
arranged as a stack of layers in sequence (Cu-O) (Ba-O) (Cu-O) (Y)
(Cu-O) (Ba-O) (Cu-O). Differently from the previous examples, an
evaluation of the mass gradients must here take into account also the
fact that not only we have a gradient in passing from one layer to
the neighbouring one, but also within each of the layers consisting
of bonds of Ba and Cu with oxygen. In the planes presenting these
bonds, it is not enough to just consider the gradient with the following
plane: we must sum up also the mass gradient of the oxygen bond. On
the other hand, in order to evaluate the overall gradient to be used in
7.2.12, it is not correct to sum up the absolute values of the “vertical”
and the “horizontal” gradient. What counts for our purposes is the
mean gradient contributed by each plane. We assume that, as in
any propagation of errors, gradients in the two orthogonal axes sum
up quadratically, as lengths of orthogonal vectors in a vector lattice.
The overall gradient should approximately be given by the sum of the
square roots of the quadratically propagated gradients of each layer,
both in the “horizontal” and “vertical” directions. The evaluation of
the mass gradient is complicated by the fact that, at the transition
to the yttrium layer, oxygen couples both to copper and to yttrium,
in an orthorhombic form. The crystal is therefore not structured in
simple layers. In order to evaluate the mass gradient for the CuO2-Y
planes we make the approximation of attributing one oxygen atom to
the copper layer, and one to yttrium. The expression of the sum of
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the mass gradients is then 5:∑
|Δm| = 2×

{√
[(Cu+ O)− (Ba+O)]2 + (Cu−O)2

+
√
[(Ba+ O)− (Cu+ O)2] + (Ba− O)2

+
√
[(Cu+O)− O]2 + (Cu−O)2

+
√
(O − Y )2

}
. (7.2.17)

Considering the atomic numbers Z(Y) = 39, Z(Ba) = 56, Z(Cu) = 29,
Z(O) = 8, we have Cu + O = 37, Ba + O = 64, and Cu − O = 21,
Ba− O = 48, and therefore:∑

|Δm| = 2×
{√

(37− 64)2 + 212 +
√

(64− 37)2 + 482

+
√

(37− 8)2 + 212 +
√

(8− 39)2
}

≈ 2× {34.2 + 55.1 + 36 + 31} ≈ 312

(YBCO) . (7.2.18)

Rescaling the temperature from the previous elements through 7.2.12,
we obtain a critical temperature Tc ≈ 312/160× 42 ∼ 82K. If, in or-
der to reduce the propagated error, instead of starting with the critical
temperature of LaOFeAs as obtained through the series of rescalings
from the metallic superconductors, we use as starting point its expe-
rimental value, 44K, we obtain for YBCO a critical temperature of
∼ 86K. The experimental one is around 90-92K.

The YBCO compound is part of a series, the so-called “123” super-
conductors, of similar critical temperatures, which differ by the substi-
tution of yttrium with another element of the family of lanthanoids,
including lanthanium. All these elements are heavier than yttrium,
and we expect to find higher critical temperatures. This however is
not always what happens. For instance, (Y0.5Gd0.5)Ba2Cu3O7 with Tc
= 97K, (Y0.5Tm0.5)Ba2Cu3O7 with 105K, and (Y0.5Lu0.5)Ba2Cu3O7

with 107K present an increasing critical temperature, as expected

5From now on we adopt the convention of indicating elements with Roman capital
letters, and in italics their mass, so that e.g. Cu stays for m(Cu).
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from the increasing of mass of the elements that substitute the pure
yttrium, and the further symmetry breaking due to the fact that yt-
trium is substituted by a mixture of elements, as indicated in the bra-
ckets. However, YbBa2Cu3O7 has Tc = 89K, and TmBa2Cu3O7 has
Tc = 90K although Tm is lighter than Yb, and similarly GdBa2Cu3O7

has Tc = 94K, and NdBa2Cu3O7 has Tc = 96K, although Nd is lighter
than Gd. A reason for this apparently odd behaviour could lie in the
fact that the differences in atomic number are indeed very small, to
the point that other effects play a non negligible role. In this case,
in order to obtain more reliable predictions we would need a finer de-
termination of the space layout of the energies and masses of these
configurations.

There is another superconductor very similar to those of the YBCO
series. It is YSr2Cu3O7, which has a critical temperature Tc = 62K.
Strontium has atomic number 38, instead of the 56 of barium. In
expression 7.2.18 we must therefore substitute Ba + O = 64 with 38
+ 8 = 46, and Ba+ O = 48 with Sr − O = 30. We have:∑

|Δm| = 2×
{√

(37− 46)2 + 212 +
√

(46− 37)2 + 302

+
√

(37− 8)2 + 212 +
√

(8− 39)2
}

≈ 2× {22.9 + 31.3 + 36 + 31} ≈ 242.4

(YSrCCO) . (7.2.19)

Rescaling from YBCO, we obtain a critical temperature of 63-64K, in
substantial agreement with the experiments.

7.2.1.3 BSCCO

We consider now the bismuth-strontium-calcium-copper-oxide super-
conductors (BSCCO) [114]: Bi2212 (Bi2Sr2CaCu2O2) and Bi2223
(Bi2Sr2Ca2Cu3O10). The lattice structure of the Bi2212 form is a
stack of the following layers: (Bi-O) (Sr-O) (Cu-O2) (Ca) (Cu-O2)
(Sr-O) (Bi-O) (Bi-O) (Sr-O) (Cu-O2) (Ca) (Cu-O2) (Sr-O) (Bi-O).
The Bi2223 is similar, with one more (Ca) (Cu-O2) layer. As for
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YBCO, here too we must propagate both the “horizontal” and the
“vertical” gradients. In this case the horizontal bonds are those of
Bi, Sr and Cu with oxygen. For the Bi2212 form, we need there-
fore Bi + O = 83 + 8 = 91, Sr + O = 38 + 8 = 46, Ca = 20,
Cu+O2 = 29+16 = 45 and Bi−O = 75, Sr−O = 30, Cu−O = 21,
to give:∑

|Δm| = 2×
{√

[(Bi+ O)− (Sr + O)]2 + (Bi− O)2

+
√
[(Cu+ 2O)− (Sr + O)]2 + (Sr −O)2

+
√
[(Ca)− (Cu+ 2O)]2 + [(Cu− O) + (Cu− O)]2

= 2×
{√

(91− 46)2 + 752 +
√
(45− 46)2 + 302

+
√

(20− 45)2 + (21 + 21)2
}

≈ 2× {87.5 + 30 + 49} ≈ 332

(Bi2212) . (7.2.20)

Rescaling the temperature from LaOFeAs through 7.2.12 we obtain
a critical temperature Tc ≈ 332/160 × 42 ∼ 87K. Starting from the
experimental value, 44K, in order to reduce the propagated error, we
obtain for the Bi2212 a critical temperature of ∼ 91K, closer to the
experimental one (92K).

The structure of Bi2223 is very similar to the one of Bi2212, with
just the difference of a Ca, CuO2 layer-pair in each half-lattice block.
In order to obtain the mass gradient of Bi2223 we must therefore just
correct the former evaluation by adding an amount |Ca − CuO2)| +√

[Ca− CuO2)]2 + [2|Cu− O]2:∑
|Δm| =

∑
|Δm|(Bi(2212)) + |20− 45|

+
√
(20− 45)2 + (21 + 21)2

= 332 + 74 = 406

(Bi2223) , (7.2.21)
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corresponding to a temperature of 406/160 × 42 = 107K (∼ 111K
if we start from the experimental 44K for the critical temperature of
LaOFeAs). The experimental value is around 110K.

7.2.2 The Tl-Ba-Ca-Cu-O superconductor

7.2.2.1 Tl2Ba2CuO6 (Tl-2201)

The stacking sequence is as follows: (Tl-O) (Ba-O) (Cu-O2) (Ba-O)
(Tl-O) 6, and the expression of the mass gradient sum is:∑

|Δm| =
√
(T l −O)2 + [(T l + O)− (Ba+O)]2

+
√
[(Ba+ O)− (Cu+ O + O)]2 + (Ba−O)2

+
{
(Cu− O)2 + (Cu− O)2

+[(Cu+ O + O)− (Ba+O)]2
}1

2

+
√
[(Ba+ O)− (T l +O)]2 + (Ba− O)2

+
√
(T l −O)2 + [(T l + O)− (T l +O)]2 . (7.2.22)

From the atomic numbers Z(Tl) = 81, Z(Ba) = 56, Z(Cu) = 29 and
Z(O) = 8 we derive (T l − O) = 73, (T l + O) = 89, (Ba − O) = 48,
(Ba+O) = 64, (Cu−O−O) = 21, and (Cu+O+O) = 45. Plugging
these values into the gradient sum expression, we obtain:∑

|Δm| =
√
732 + (89− 64)2

+
√
(64− 45)2 + 482

+
√
2× 212 + (45− 64)2

+
√
(64− 89)2 + 482 + 73

= 291 . (7.2.23)

Rescaling now from LaOFeAs, expression 7.2.15, and using once again
the 44K of the experimental temperature, we obtain (291/160)×44 =
80K (had we used our calculated 42K for LaOFeAs, we would have

6See refs. [115], [116], and also [117].
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obtained ∼ 76.5K). The experimental critical temperature is around
80K.

7.2.2.2 Tl2Ba2CaCu2O8 (Tl-2212)

In this crystal there are two Cu-O-O layers with a Ca layer in between,
with stacking sequence (Tl-O) (Ba-O) (Cu-O2) (Ca) (Cu-O2) (Ba-O)
(Tl-O). In order to obtain the mass-gradient sum we have just to add
to the previous computation a module accounting for the extra Ca
layer vertically sandwiched between the two extra Cu-O-O, of which
we consider also the horizontal contribution to the gradient:√

[(Cu+ O + O)− Ca]2 + (Cu− O)2 + (Cu− O)2

+
√
[(Cu+O +O)− Ca]2 .

(7.2.24)

Considering that the atomic number of Ca is 20, this means an amount:√
252 + 2× 212 + 25 = 64 . (7.2.25)

This gives a sum 291 + 64 = 355, leading to a critical temperature of
around 98K. The experimental one is around 108K.

7.2.2.3 Tl2Ba2Ca2Cu3O10 (Tl-2223)

In this crystal there are three CuO2 layers enclosing one Ca layer
between each of them. That means, one more [(CU-O-O) Ca] module
as compared to Tl2Ba2CaCu2O8. We obtain therefore a value of mass
gradient sum 355 + 64 = 419, leading to a critical temperature of
115K. The experimental one is 125K.

Both in this and in the previous superconductor we obtain slightly
underestimated values of critical temperature. On the other hand, the
ratio of the two critical temperatures we obtain, namely, 115/98, is in
better agreement with the ratio of the experimental values. Indeed, it
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gives a slight overestimate, which partially compensates the underesti-
mate of the first temperature. From a qualitative point of view, these
under/over-estimates can be understood as follows: when a Ca layer
is added to the Tl2Ba2CuO6 structure, the symmetry of the configura-
tion of a stack of “(X-O)” layers gets further broken, because the Ca
layer does not contain an oxygen bond. Not taking this into account
leads to an underestimate of the increase in critical temperature. On
the other hand, when a further identical layer is added, there is a par-
tial restoration of symmetry, which implies a reduction in the increase
of critical temperature, thereby our over-estimation. This effect be-
comes more relevant in more complicated configurations: in Tl-based
superconductors, the value of Tc decreases after four CuO2 layers in
TlBa2Can−1CunO2n+3, and in the Tl2Ba2Can−1CunO2n+4 compound it
decreases after three CuO2 layers [118].

7.2.3 Comparing within families

Superconductivity is detected through investigation of the magnetic
properties of materials. In particular, for what concerns high-tempera-
ture superconductors, pinning of magnetic flux through impurities
plays a significant role, not only in reducing the effective resistance,
and therefore affecting the conditions for the detection of a regime
recognizable as the one of superconductivity, but, in the light of our
analysis, also because it decreases the symmetry of the geometry. Also
pressure plays a relevant role, because high pressures correspond to
more remote geometries, and are expected to lead to higher critical
temperatures (a fact that corresponds to the experimental observa-
tion). It is therefore rather difficult to give a correct quantitative
account of the superconducting properties and the critical tempera-
tures of all superconducting materials, and impossible to do it only
in terms of comparison of average mass gradients referring to a single
material taken as a universal starting point. In several cases, the best
we can do is comparing critical temperatures within “families” of ma-
terials, which are assumed to share common properties, so that the
change in the lattice structure taken into account by our evaluation
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of mass gradients can be considered as the only relevant variable and
effective term of comparison.

7.2.3.1 Hg-Ba-Ca-Cu-O superconductor

An example of this kind of difficulties is provided by the Hg-series
(Hg-1201, Hg-1212, Hg-1223 [119]). In principle, it is analogous to
the series in which mercury is substituted by thallium (the Tl-series:
Tl-1201, Tl-1212, Tl-1223), but, while the critical temperature of Tl-
1201 is lower than 10K, the one of the analogous compound made
with Hg (one position lower in the atomic number scale) is around
94K. Both these numbers escape the predictions we can make with
our simple mass-gradient arguments, applied using mercury as star-
ting point. Indeed the Hg-1201 material is a critical example in which
doping plays a crucial role, whose details are still controversial. As re-
ported in [120], depending on the amount of doping, this cuprate can
superconduct or not, with a range of critical temperatures spanning
the whole spectrum from zero to the maximal value. The critical tem-
perature has proven to be also very sensitive to pressure [121]. In this
case, the best we can do is to compare critical temperatures assuming
comparable doping/flux pinning conditions. Assuming that, for ins-
tance, the highest critical temperature within the Hg-1201, 1212, 1223
series are obtained with a similar amount of such “external” inputs, we
can expect to be able to give a reasonably good estimate of the ratios
of critical temperatures within the Hg series. An illustration of the
crystal structure of HgBa2CuO4 (Hg-1201, Tc = 94K), HgBa2CaCu2O6

(Hg-1212, Tc = 128K) and HgBa2Ca2Cu3O8 (Hg-1223, Tc = 134K)
can be found in [117]. Computing the ratios of temperatures along
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the same line as in the previous examples, we obtain:

Tc(Hg − 1223)

Tc(Hg − 1212)
∼ 1.23 ,

Tc(Hg − 1212)

Tc(Hg − 1201)
∼ 1.3 ,

Tc(Hg − 1223)

Tc(Hg − 1201)
∼ 1.59 , (7.2.26)

to be compared with the ratios of the experimental ones, namely 1.05,
1.36, and 1.43 for the (1223

/
1201) ratio. They show a similar situa-

tion of underestimate for the ratio of the lower pair of temperatures,
and overestimate for the ratio of the third to the second one, as in
the case of the thallium compound discussed above. Taking this into
account, the ratios we find are not far from the experimental ones (the
absolute determination of the temperature fails in this case to give a
correct prediction, in that it would tell that both the thallium and
the mercury -1201, -1212, -1223 series should have the same critical
temperatures). This suggests that, keeping fixed all other conditions,
the argument based on the evaluation of symmetry properties of the
mass/energy configurations makes sense, although in some cases it is
too simplified, and not sufficient to determine the overall conditions
producing the particular state of a material which is detected as a
regime of superconductivity.

A comparison restricted to elements belonging to the same family
is our way of proceeding also in the case of higher temperature su-
perconductors. Indeed, when passing to higher-Tc superconductors,
and therefore to higher complexity of the lattice structure, a thorough
analysis of the details of any part of the lattice block becomes the
more and more difficult. On the other hand, in first approximation a
detailed knowledge of the full lattice structure is not even necessary.
The materials we are going to consider can be grouped into “families”,
whose elements share part of the lattice structure, and differ by the
structure of just one (or some) of the lattice blocks. In this way, it is
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possible to perform a partial analysis, by comparing the critical tem-
peratures among the members of each family. As the whole structure
becomes longer and longer, it becomes smaller the error we introduce
in weighting the various blocks according to their average length, the-
reby neglecting the details of the single mass gradients within com-
mon blocks. The difference from one material to the neighbouring one
within a family usually consists in the substitution of some atomic ele-
ments, or in the addition of further replicas of already present layers.
The mass differences introduced by these changes will be dealt with
as a “second order” perturbation:

T ′c
Tc

=
Tc + δTc

Tc
= 1 +

δTc
Tc
≈ 1 + δ|(∇M)|extra block

/∑
|∇M | .
(7.2.27)

7.2.3.2 The SnBaCaCuO to (TlBa)BaCaCuO family.

i) From 160K (Sn3Ba4Ca2Cu7Oν) to 200K (Sn6Ba4Ca2Cu10Oν).

The lattice structure of Sn3Ba4Ca2Cu7Oy consists of a stack of
(Ca) (CuOx) [ (Ba) (CuOy) (Ba) ] (CuOx) (Ca) (CuOx) [ (Ba)
(Sn-O) (Cu) (Sn-O) (Cu) (Sn-O) (Ba) ] (CuOx) , where in the
first square bracket we indicate the light part of the lattice, in
the second the heavy part, and (CuOx), (CuOy) indicate copper
oxide layers. Here and in the following we use this notation to
indicate, in general, (CuO3) and (CuO2) layers respectively 7.
The lattice structure of Sn6Ba4Ca2Cu10Oν is obtained by dou-
bling the “heavy” part of the lattice of Sn3Ba4Ca2Cu7Oν: ins-
tead of a sequence (Sn-O) (Cu) (Sn-O) (Cu) (Sn-O) we have
now (Sn-O) (Cu) (Sn-O) (Cu) (Sn-O) (Cu) (Sn-O) (Cu) (Sn-O)
(Cu) (Sn-O). The structure of this superconductor corresponds
therefore to that of Sn3Ba4Ca2Cu7Oν , with the duplication of
an entire lattice block. For the evaluation of the critical tem-
perature we assume that, owing to the high number of lattice
elements/layers, in first approximation we can consider the geo-

7Illustrations of this structure and of those of the following materials can be found
ref. [122].
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7.2 Critical temperatures in various superconductors

metry of the blocks structure as prevailing over the fine-structure
of energy gradients, which distinguishes between light and heavy
part of the lattice. That means, in first instance we deal with the
blocks as if all lattice layers were equal, something that in the
average is not far from the truth, and implies an error that be-
comes smaller and smaller as we go on with an increasing length
of the crystal structure. Since the “replica” of the lattice block
we add to obtain this superconductor corresponds to around 1/4
of the whole structure, we expect some 25% of increase in Tc from
the one above, corresponding to an increase from 160 to 200K
8.

ii) 212K: (Sn5In)Ba4Ca2Cu10Oν

The lattice structure consists of a stack of the following layers:
(Ca) (CuOx) [ (Ba) (CuO2) (Ba) ] (CuOx) (Ca) (CuOx) [ (Ba)
(Sn,In-O) (Cu) (Sn,In-O) (Cu) (Sn,In-O) (Cu) (Sn,In-O) (Cu)
(Sn,In-O) (Cu) (Sn,In-O) (Ba) ] (CuOx). We expect a higher
Tc than the in last crystal of point (i) (Sn6Ba4Ca2Cu10Oν, Tc =
200K), as a consequence of the lower symmetry, now broken by
the substitution of a tin atom with indium. This corresponds to
a breaking of more or less one out of 18− 20 lattice layers, i.e. a
∼ 5-6% of the total. Since the mass difference between Sn and
In is of much lower order, in first approximation the increase
of the critical temperature should be mainly determined by the
symmetry breaking among different lattice layers, and therefore
be of order ∼ 5-6%. This gives indeed some 210-212K, as is
observed.

The mass difference between Sn and In plays a role as a se-
cond order effect, that can be observed in the smaller variation
of the critical temperature after a change of the (Sn5In) struc-
ture into (Sn4In2). The (Sn5In) compound should superconduct

8More precisely, since the change is made in the heavy part of the lattice, it cor-
responds to more than 1/4 of the structure. However, since the modification
consists in adding a replica of one layer, the effect is softened by the fact that
there is also a further symmetry among the two identical layers. 1/4 is therefore
to be taken as a rough estimate of the order of magnitude of the effect.
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7 High-temperature superconductivity

at a higher temperature than (Sn4In2), where there is a partial
reconstruction of a higher symmetry within indium planes. Ex-
perimentally, one observes 212K for the first, and 208K for the
second. Also in this case, an evaluation, even approximate, is ra-
ther difficult, because the naive value of 5/4 one would suppose
(20% increase in the temperature) must be ”tempered” by the
fact that Sn and In weight almost the same. Their relative mass
difference is 1/50, and this would mean a symmetry breaking of
about 2%, indeed corresponding to the order of change in the
observed Tc.

iii) 218K: (Sn5In)Ba4Ca2Cu11Oν

The lattice structure is similar to the one of
(Sn5In)Ba4Ca2Cu10Oν but contains one extra Cu in the light
part of the lattice: (Ca) (CuOx) [ (Ba) (Cu2Oy) (Ba) ] (CuOx)
(Ca) (CuOx) [ (Ba) (Sn,In-O) (Cu) (Sn,In-O) (Cu) (Sn,In-O)
(Cu) (Sn,In-O) (Cu) (Sn,In-O) (Cu) (Sn,In-O) (Ba) ] (CuOx).
Adding a copper atom breaks part of the symmetry, thereby in-
creasing Tc. As this occurs in one of the some 22 layers of each
lattice block, we would expect this to produce a correction of
about ∼1/22 = 4.5% of Tc. This would mean some 9K. Howe-
ver, in this estimate we don’t consider finer corrections obtained
by taking into account mass gradients. In practice, the breaking
of symmetry is softened by the fact that there is a partial resto-
ration of symmetry due to the fact that we are adding one more
atom in a layer made of atoms of the same element. Indeed, the
correction which is experimentally observed seems to be around
6K, indicating a slightly lower symmetry breaking than in our
rough estimate.

iv) 233K: Tl5Ba4Ca2Cu11Oν

The lattice structure is given by the following stack: (Ca) (CuOx)
[ (Ba) (Cu2Oy) (Ba)] (CuOx) (Ca) (CuOx) [ (Ba) (Tl-O) (Cu)
(Tl-O) (Cu) (Tl-O) (Cu) (Tl-O) (Cu) (Tl-O) (Ba) ] (CuOx).
The heavy part of the lattice is similar to the one of the pre-
vious cuprate, with the suppression of the indium layer, and the
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7.2 Critical temperatures in various superconductors

substitution of tin atoms with thallium. In order to compare
critical temperatures, let us compute the mass gradient sums
corresponding to this part of the lattice for both these mate-
rials. They correspond to the stacking sequences (Ba) (Sn-O)
(CuO) (Sn-O) (Cu) (Sn-O) (Cu) (Sn-O) (Cu) (Sn-O) (Cu) (Sn-
O) (Ba) and (Ba) (Tl-O) (Cu) (Tl-O) (Cu) (Tl-O) (Cu) (Tl-O)
(Cu) (Tl-O) (Ba) respectively. In the Sn sequence, one of the six
tin atoms is substituted by an indium atom. Since the atomic
numbers are respectively Z(In) = 49 and Z(Sn) = 50, in first
approximation we neglect the slight asymmetry introduced by
the (5 Sn)/In alternation. The mass gradient sums are:∑

|Δm| = |Ba− (T l + O)|

+4×
{√

(T l − O)2 + [(T l +O)− Cu]2

+ |Cu− (T l + O)|}
+
√
(T l −O)2 + [(T l + O)−Ba]2 , (7.2.28)

and, neglecting the difference between Sn and In:∑
|Δm| = |Ba− (Sn+ O)|

+5×
{√

(Sn− O)2 + [(Sn+ O)− Cu]2

+ |Cu− (Sn+ O)|}
+
√

(Sn−O)2 + [(Sn+O)− Ba]2 . (7.2.29)

Inserting the atomic numbers Z(Ba) = 56, Z(Tl) = 81, Z(Cu) =
29, Z(O) = 8 and Z(Sn) = 50 we obtain:∑

|Δm|(Tl5) = |56− 89|

+4
{
×
√

732 + (89− 29)2 + |29− 89|
}

+
√

732 + (89− 56)2

= 33 + 4× {94.5 + 60}+ 80, 1

≈ 731 , (7.2.30)
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and∑
|Δm|(Sn5In) = |56− 58|

+5
{
×
√
422 + (58− 29)2 + |29− 58|

}
+
√

422 + (58− 56)2

= 2 + 5× {51 + 29}+ 42

≈ 444 . (7.2.31)

The ratio between the two sums is therefore:∑
|Δm|(Tl5)∑
|Δm|(Sn5In)

≈ 1.65 . (7.2.32)

In order to derive the rescaling of the critical temperature, we
must see how much these gradients weight in the overall deter-
mination of the symmetry of these crystal configurations. The
heavy part of the lattice amounts to more or less one half of the
entire structure. However, a large part of this sub-lattice has a
symmetry of five–almost six layers respectively. In practice, if
the gradient (Ba)–(Tl-O), or (Ba)–(Sn-O) occurs on two stairs
out of some 20–22, the change from (Sn-O)–(Cu) to (Tl-O)–
(Cu), while occurring along some 5 layers, does not contribute
so much to the reduction of symmetry. Owing to the symmetry
of this stack, we expect it to contribute only by a factor ∼ 1

5!
.

Within the order of approximation we are making in this evalu-
ation, it can therefore be neglected. The only part that counts
is therefore the ratio:√

[Ba− (Sn+ O)]2 + (Sn− O)2√
[Ba− (T l + O)]2 + (T l −O)2

≈ 1.9 , (7.2.33)

that corresponds to the change in two out of some 20 layers,
giving therefore a factor:

〈||G||〉Tl5
〈||G||〉Sn5In

≈ 1.9 + 10

11
∼ 1.082 , (7.2.34)

implying a jump in critical temperature from 218K to 236K.

282



7.2 Critical temperatures in various superconductors

v) 242K: (Tl4Ba)Ba4Ca2Cu11Oν

The lattice structure is a stack of the following layers: (Ca)
(CuOx) [ (Ba) (Cu2Oy) (Ba) ] (CuOx) (Ca) (CuOx) [ (Ba) (X1-O)
(Cu) (X2-O) (Cu) (X3-O) (Cu) (X4-O) (Cu) (X5-O) (Ba) ] (Cu),
where, for every column, Xi stays four times for Tl, and one
time for Ba in always different position for every layer. Between
the cuprate of above and this one there is the substitution of
some atoms of thallium with barium, which breaks part of the
symmetry of the heavy part of the lattice. In this case, owing to
the alternating position of the barium substituting thallium, the
breaking of the symmetry, no more negligible as it was in the case
of the Sn/In asymmetry, occurs not only in the “vertical” but
also in the “horizontal” direction. In the aim of estimating the
amount of symmetry breaking, we can make the approximation
of considering just the effect of neighbouring lattice sites. In
this approximation, each oxygen is surrounded either by four
thallium, or by three thallium and one barium atom. The first
case occurs only on one stair, whereas the other case occurs in
the four remnant stairs. Therefore, we can roughly say that of
the initial five thallium layers, four get separated into 1 (barium)
plus 3 (thallium). In each of these four the symmetry factor is
therefore 2

3 (the barium/thallium mass ratio) × 4
3 (the amount

of remnant symmetry group, i.e. the ratio of the four before the
breaking to the three after the breaking). All in all this makes:

5

1 + 4
(
2
3
× 4

3

) ≈ 1.09756 . (7.2.35)

Made on around 1/3 of the whole lattice raw, this implies a jump
in the critical temperature of a factor around (2 + 1.09756)/3,
that is, from the former 233K-234K to some 241K-242K, corre-
sponding to the temperatures reported in the table of page 290.

vi) 254K: (Tl4Ba)Ba2Ca2Cu7O13+

The lattice structure consists of a stack of (Ca) (CuOy) (Ca)
(CuOx) [ (Ba) (X1-O) (Cu) (X2-O) (Cu) (X3-O) (Cu) (X4-O)
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7 High-temperature superconductivity

(Cu) (X5-O) (Ba) ] (CuOx). As compared to structure of (v),
here the light part of the lattice has been partly cut out. In this
case, differently from what one could expect, shortening a piece
of the crystal structure leads to an increase of critical tempe-
rature. This can be understood as follows. All the elements of
this family of materials are characterized by the fact of having
a lattice structure consisting of a heavy and a light part. When
considered from the point of view of a scale larger than just
one lattice period, the reduction of the part with lighter masses,
although in itself leading to a lower overall mass gradient wi-
thin the single lattice length, owing to the shorter light-lattice
structure, on a scale of several lattice units it increases the ave-
rage gradient. The average effect is therefore equivalent to an
increase of the heavy part of the lattice, the one with higher
mass gradients. These situations are illustrated in figure 7.1.
We can give a rough estimate of the effect, by considering that
the light part has masses which are around one-half of those of
the heavy part, and the change in the structure, as compared
to the longer lattice form (the one of (Tl4Ba)Ba4Ca2Cu11Oν),
amounts to suppressing some 2-3 layers in this light part, out of
a total of ∼ 20 lattice planes. This is a change of around 1/2 of
10%, i.e. ∼ 5%, corresponding to a jump in the temperature of
some 12K. This leads from the former 242K to around 254K,
the value experimentally observed (see table of page 290).

This example shows that, although working within a single unit
of lattice length, as implied in 7.2.10–7.2.12, is in most cases cor-
rect, the comparison of geometries is in principle something more
subtle. In the case of (Tl4Ba)Ba2Ca2Cu7O13+, just considering
one unit of lattice length is not enough.

7.2.3.3 The (SnPbIn)BaTmCuO family: from 163K to 195K.

The lattice structure of (Sn1.0Pb0.5In0.5)Ba4Tm4Cu6O18+, Tc = 163K,
consists of a stack of (0.5(Sn1.0Pb0.5In0.5)-O) (Ba) (CuOx) (Tm)
(CuOx) (Ba) (0.5(Sn1.0Pb0.5In0.5)-O) (Ba) (CuOx) (Tm) (CuOy) (Tm)
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Figure 7.1: Both shortening the light, small mass gradient part
(example B), and lengthening the heavy, high gradient
part of the lattice (example C) lead to an effective increase
of average mass gradient as compared to A, and therefore
to a higher remoteness of the geometry, which reflects in
an increased critical temperature.
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(CuOy) (Tm) (CuOx) (Ba). The lattice structure of (Sn1.0Pb0.5In0.5)
Ba4Tm5Cu7O20+, Tc = 185K, consists of a stack of
(0.5(Sn1.0Pb0.5In0.5)-O) (Ba) (CuOx) (Tm) (CuOx) (Ba)
(0.5(Sn1.0Pb0.5In0.5)-O) (Ba) (CuOx) (Tm) (CuOy) (Tm) (CuOy) (Tm)
(CuOy) (Tm) (CuOx) (Ba).
The lattice structure of (Sn1.0Pb0.5In0.5)Ba4Tm6Cu8O22+, Tc = 195K,
consists of a stack of (0.5(Sn1.0Pb0.5In0.5)-O) (Ba) (CuOx) (Tm)
(CuOx) (Ba) (0.5(Sn1.0Pb0.5In0.5)-O) (Ba) (CuOx) (Tm) (CuOy) (Tm)
(CuOy) (Tm) (CuOy) (Tm) (CuOy) (Tm) (CuOx) (Ba). It is difficult
to compare with the elements of the previous series. On the other
hand, since the differences among the elements of this series consist in
adding a [(CuOy) (Tm)] pair of layers within the same lattice subset,
it is relatively easy to compare the elements within this group. In
practice we are adding a Tm line at each step, increasing the lattice
complexity by one layer out of a total of 10 in the first case, and of
10+1 in the second case. We expect therefore an increase of Tc by a
factor 11/10 and 12/11 respectively. This corresponds to a jump from
∼163K to ∼180K, and to ∼195K in the second case, to be compa-
red with the values 163K, 185K and 195K reported in the table of
page 290.

7.3 To summarize

This analysis provides support to the hypothesis that quantum gravity
effects may be at the ground of the understanding of the relation bet-
ween lattice complexity and critical temperature of superconductors.
Roughly speaking, working in a quantum gravity framework effecti-
vely means having a Planck constant dependent on the gradient of the
distribution of energy along space. If we introduce an energy density
ρ(E), this in practice means that we are effectively promoting � to:

� → �(∇ρ(E)) . (7.3.1)

Equivalently, we can also say that we work with a geometry-dependent
Planck constant:

� → �(gμν) , (7.3.2)
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or, to work with quantities independent on the choice of coordinate
system, with a curvature-dependent Planck constant. Although all
the expressions considered in this chapter are worked out within a
non-field theoretical framework, from a heuristic point of view this
dependence can be understood as follows. Quantization of gravity in-
troduces an effective dependence on � in the modes of propagation
of the metric tensor gμν . This means that, even if we start with a
space with a classical background metric, after quantization, and as a
consequence of the back-reaction due to the interaction with matter
and radiation, we will end up with a space with �-dependent geometry,
gμν(�). Taking the point of view of considering geometry as a primary,
independent input corresponds to inverting the relation gμν = gμν(�)
to � = �(gμν). The functional dependence is not simple; on the other
hand, its explicit expression is not even fundamental, because it ex-
presses only an effective parametrization: in general, in order to de-
rive, case by case, the appropriate effective parametrization, one has
to refer to 2.1.16. The ground value of the Planck constant is the one
corresponding to the “vacuum”, which in our case is the universe with
uniform curvature, corresponding to the cosmological constant 9. A
uniform curvature gives a universal contribution that can be subtrac-
ted, i.e. re-absorbed into a redefinition of the Planck constant. This
is what is done when gravity is decoupled from the quantum theory,
and one recovers the traditional quantum theory.

A dependence of the Planck constant on the geometry means that
also the amount of quantum delocalization of wave functions, the me-
chanism at the ground of superconductivity, depends on the geometry.
However, the relation between critical temperature and lattice com-
plexity of superconductors cannot be observed in a clean, direct way:
superconductivity is a regime in most cases “unstable” in pure mate-
rials, and the way it is detected makes measurements very sensitive to
several additional conditions. The relation we propose between criti-

9More precisely, the ground curvature is the average sum of the cosmological term,
plus the contributions of matter and radiation. It is the sum of all these terms
what gives the universe the ground average curvature of a 3-sphere (see chap-
ter 5).
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cal temperature and quantum geometry only works at the net of any
other effect, such as degree of doping/pinning of magnetic flux, etc.
A quantitative prediction is only possible when the contribution of
these effects can been subtracted. The agreement between observa-
tions and our theoretical predictions has therefore to be read “in the
average”, and works better when comparing temperatures between
materials belonging to the same “family”, for which the other condi-
tions can be assumed to be similar (the case of the Hg-1201/1212/1223
series is exemplar of this situation). Nevertheless, the agreement bet-
ween predictions and experimental observations is impressive. Our
analysis provides a further indication that, differently from what one
is used to expect, quantum gravity is not just a matter of Planck
scale phenomena, but in principle comes into play, to contribute for
non-negligible corrections, in any quantum system corresponding to a
non-trivial geometry of space-time.

Since in this scenario masses, couplings, and the geometry itself
evolves with time, also the effective Planck constant expressed in 7.3.2
is expected to evolve with time, through the time dependence of the
metric gμν → gμν(t). Time dependence of the metric is familiar in
general relativity, where it occurs through its dependence on the space-
time coordinates. However, here we mean something more subtle: we
mean that also the microscopic structure of a crystal, and its energy
gradients, evolve with time. In chapter 4 we have seen that masses
evolve as negative powers of the age of the universe. As also seen in
chapter 6, this implies that the ratio of different mass scales increases
with time. We must therefore expect also an increase in the ratio of
different degrees of delocalization of wavefunctions. How fast should
this go can be estimated by considering that, approximately, mass
ratios scale as powers of the age of the universe. With a similar degree
of approximation, we can assume that also lattice gradient ratios scale
as powers of the age of the universe. A factor 2 in the ratio of the
mean weights of lattice geometries at present time:

ξi
ξj
≈ 〈∇mi〉
〈∇mj〉

∼ 2 ,
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corresponds to a very small exponent a(ξi/ξj) of the evolution:

ξi
ξj
≈ T a(ξi/ξj ) .

This is given in fact as log 2 = a(ξi/ξj) log T , where the age of the
universe T is expressed in units of appropriately converted Planck
length. At present time T ∼ 1061. This kind of evolution is therefore
only detectable on a large, cosmological, time scale, and negligible for
usual purposes.
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Transition
Temperature Material Class
in Kelvin

254 (Tl4 Ba) Ba2 Ca2 Cu7 O13+

242 (Tl4 Ba) Ba4 Ca2 Cu11 Oν

233 Tl5 Ba4 Ca2 Cu11 Oν

218 (Sn5 In) Ba4 Ca2 Cu11 Oν

212 (Sn5 In) Ba4 Ca2 Cu10 Oν

200 Sn6 Ba4 Ca2 Cu10 Oν

160 Sn3 Ba4 Ca2 Cu7 Oν

195 (Sn1.0 Pb0.5 In0.5)Ba4Tm6Cu8O22+

185 (Sn1.0 Pb0.5 In0.5)Ba4Tm5Cu7O20+ Copper-oxide
163 (Sn1.0 Pb0.5 In0.5)Ba4Tm4Cu6O18+ superconductors

125 Tl2Ba2Ca2Cu3O10

108 Tl2Ba2CaCu2O8

80 Tl2Ba2CuO6

110 Bi2 Sr2 Ca2 Cu3 O10(Bi2223)
92 Bi2Sr2CaCu2O2 (Bi2212)
92 YBa2 Cu3 O7 (YBCO)
57 SmFeAs(O,F)=SmOFeAs Iron-based
44 LaFeAs(O,F)=LaOFeAs superconductors
18 Nb3 Sn Metallic
10 NbTi low-temp.
4.2 Hg superconductors
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of the universe

In order to recover the ordinary description of physics, in the previous
chapters we have considered the limit to the continuum. Traditionally,
the basic bricks of the description of the physical world are in fact the
plane-wave free asymptotic states. Their interaction is dealt with as a
perturbation. This approach proves to be successful in the description
of weak forces (weak and electroweak), as well as in the case of “large-
scale”, classical gravitation (although excluding the cosmological scale
of the evolution of the universe, in which case the small quantum gra-
vity effects sum up on the long distance and large time elapse). Our
approach however provides us with a non-perturbative description of
the universe, in which the actual universe results from the superpo-
sition of geometries weighted according to their statistical weight in
the phase space of all the geometries. This weight corresponds to the
volume of their combinatorial group, i.e. to the number of ways they
can be formed, and is in turn related to the frequency with which they
therefore do occur. In this approach, a relevant concept is therefore
that of factorization of the weight of a geometry into prime factors,
that we interpret as corresponding to the weight of the elementary
structures of this universe. These structures have in principle nothing
to do with the traditional physical elementary structures, such as for
instance the elementary particles. Therefore, when it is a matter of
describing a free electron, it is still convenient to switch to its quan-
tum mechanical description as a free wave. But there are cases in
which this other kind of elementary structures is more appropriate.
In particular, when a truly non-perturbative description is required,
at least for the investigation of certain properties. We will see how
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this will allow us to get a new insight into the scaling structure of the
universe, and to derive the scaling behaviour of the weak and strong
coupling.

8.1 Prime numbers and complexity of structures

It is a common observation that, in first approximation, the universe
seems to reproduce its shapes at different scales. For instance, a planet
surrounded by its satellites looks like a kind of miniature-version of
the solar system. Similarly, although in a very loose way, it is not
completely wrong to imagine the atom as a small solar system. In
first approximation, this appears to be due to the fact that also the
electric force behaves in a similar way to the gravitational one, both at
the classical level of the Coulomb-like expression of the potential, and
at a field-theoretical level, being both photon and graviton massless
fields. But here we want to understand why the physical world is
ruled by forces that in first approximation behave in a similar way,
reproducing similar structures at different scales.

In our scenario, the universe, and therefore any physical system, is
given by the superposition of an infinite number of geometries, each
one with a different weight. If we want to look at the scale properties
in order to see whether and why certain structures and shapes are
roughly reproduced at different scales, we must first of all consider
the average over the staple of geometries, i.e. the “mean geometry”,
contributing to form the universe at a certain scale, and then also mod
out by the structures at lower scales. This last operation is required by
the fact that, when for instance we compare a planet and its satellites
with the solar system, we neglect the fact that certain elements of
the solar system, namely certain planets, have themselves in turn the
structure of small solar systems, and so on.

We want to obtain the number of elementary structures around
a time/energy scale N . At any energy scale N the most entropic
geometry is the 3-sphere of radius N (see chapter 2). Its weight scales
as expN2 times a factor depending on the total volume of space, and
a trivial factor N !, common to all the geometries at energy/time N .
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In our discussion these factors, which account for a permutation of
indistinguishable energy units, and for the number of possibilities of
placing the center of the 3-sphere along a space of finite extension, are
always implicitly factored out. The relevant term, expN2, which is the
part of the weight depending on the intrinsic symmetry group of the
sphere, has to be intended as the appropriate natural integer whose
size scales as the exponential of the square of the radius: although we
use the expression expN2, here we are indeed always speaking of an
integer number. As discussed in chapter 2, in this setup one works
always in a space regularized by a cut-off, to be eventually removed,
which sets the volume of space and the number of dimensions to finite
values. Under these conditions, as long as the cut-off sets a target
volume much larger than the one of the sphere, the extra factor is
almost the same for all the geometries with a volume close to the one
of the 3-sphere, and can be factored-out. The contribution due to
the cut-off becomes relevant for the geometries in which the units of
energy are distributed along a very large volume, much larger than
the one of the 3-sphere. On the other hand, as it has been discussed
in chapter 2, the weight of these geometries is much lower than the
one of the 3-sphere, which alone weights more than the sum of all
the other geometries 1. In our analysis, we can therefore normalize
all the weights dividing by the extra-factor of the 3-sphere, so that
the weight of the 3-sphere is simply expN2. This will introduce non-
integer weights, but since we are interested in the scaling properties,
what counts here is the relative scaling of subsets of numbers, and this
can be investigated independently on the normalization we choose.
The error due to the cut-off can be made arbitrarily small. In the
limit of infinite volume of the target space, the volume to be factored
out becomes the same for all the geometries. To better say, once the
overall volume factor is factored out the distance between the actual
weightW and the closest integer number, n(W ), vanishes in this limit:
|W − n(W )| < O(1/V ), where V is the volume of the target space

1We can also safely restrict our considerations to three dimensions, because the
weights of the spheres at different dimensionalities, which are anyway the most
entropic geometries for each dimension, are exponentially suppressed and there-
fore contribute to corrections of much lower order.
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(not to be confused with the volume of the 3-sphere, ∼ N3, which
corresponds to the volume of the classical geometry of the universe),

so that |W − n(W )| V→∞−→ 0.

For what we have just discussed, at any physical energy scale N
we can associate an integer n of approximate size ∼ expN2. Let us
indicate with π(n), as is usual, the number of primes up to the integer
n. The quantity of interest for us is the number of primes around n:
dπ(n(N))/dN (×ΔN = 1). This precisely indicates the number of in-
dependent, basic structures, around the chosen scale, neglecting higher
or lower scales. In order to simplify the computation, instead of the
finite interval we consider the derivative, which gives us the increment
in the number of structures per increment of the scale. Consider the
approximate formula giving the number of primes up to the integer n:

π(n) ≈ n

lnn
. (8.1.1)

According to the theorem of primes, this approximate equation is the
more and more exactly satisfied the larger and larger is the size of n.
By inserting n = expN2, and taking the derivative with respect to N ,
we obtain:

dπ(n(N))

dN
=

d

dN

eN
2

N2
=

2NeN
2

N2
− 2

eN
2

N3
. (8.1.2)

In order to compare the behaviour at different scales we must then
normalize the increments of our differential expression dividing by the
scale N itself. We obtain:

dπ(n(N))

d lnN
=

1

N

dπ(n(N))

dN
≈ 2eN

2

N2
− 2

eN
2

N4
. (8.1.3)

We now mod out the number of structures at the lower scale, by
dividing by π(n(N)), finally obtaining the expression we were looking
for:

d ln π(n(N))

d lnN
≈ 2 − 2

N2
, (8.1.4)
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where we used the symbol ≈ in order to make clear that this is only an
approximated expression, obtained by considering just the most entro-
pic geometry. In first approximation, the r.h.s. of expression 8.1.4 is a
constant. This tells us that, roughly, the world shows up with similar
structures at different scales. Roughly speaking, one could say that,
if one forgets quantum corrections (i.e. the contribution of the rest of
the staple of geometries out of the classical one), “an atom is like a
solar system”, thereby justifying the Bohr planetary-like approxima-
tion of the atom. The second term in the r.h.s. of 8.1.4 comes from
the logarithmic factor, which characterises the distribution of primes,
singling them out of the whole set of natural numbers. It gives a 1/N2

correction, that looks negligible at large N . However, this correction
is, depending on the scale, precisely of the order either of the quantum
corrections, or of the corrections introduced in the classical geometry
by matter clusters (observe also that the energy density of the uni-
verse scales like 1/N2). As we are going to discuss in the next section,
this term can be considered an “interaction” term, that tells about the
strength of medium and large range forces. The way it scales with N
tells us that at larger scales the world tends to become more “simple”
in the sense of more classical and flat.

8.2 The scaling of couplings

Knowing the distribution of prime vs non-prime numbers allows us to
derive also certain scaling properties of the couplings. As discussed,
in this theoretical framework a coupling is a volume in the phase
space of the geometric configurations of the universe: it measures
the weight of a transformation of particles. Along the evolution of
the universe couplings scale therefore basically like ratios of masses.
However, physics is more complex than just direct transitions from
particle A to particle B. Indeed, we distinguish between long range and
short range forces, and between strong and weak forces. The turning
point between these two is the unit of measure of all the scales: the
Planck scale. The gravitational coupling has here by definition size 1
(see chapter 3). If the strength of the gravitational coupling is fixed,
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8 Prime numbers and the structures of the universe

the strength of the electroweak coupling has been derived in chapter 4
by going to a logarithmic representation of the physical world. As
discussed in chapter 3, this is the picture in which gravity is decoupled,
and one can easily investigate the spectrum of the elementary particles.
Once obtained the bare value of the electroweak coupling from a ratio
of volumes at a certain age of the universe, the actual value at the
appropriate physical scale has then been computed by running the
bare value from the ground scale of masses, assuming a logarithmic
rescaling of the coupling as a function of the energy scale.

In the light of the present analysis, we can get a further insight
in what we are precisely doing when passing to a perturbative repre-
sentation. Within the set of all possible geometries, a special role is
played by those which have a weight that, once normalized to the 3-
sphere as above, is given by a prime number 2. They don’t contain
subsets corresponding to subgroups of their global symmetry group.
As such, they must be viewed as “global” geometries: they describe
the entire universe as a whole piece. We can test this interpretation
by considering that, as compared to the other geometries, the “local”
ones, the volume of their symmetry group should loose a factor cor-
responding to the volume of the universe. The weights of the global
geometries must therefore roughly scale as 1/N3 of the weights of the
local configurations. The heaviest local geometry is the 3-sphere (the
weight of the 3-sphere clearly cannot be a prime number, because the
symmetry group of the sphere has subgroups, whose weight is an in-
teger divisor of the weight of the sphere). As discussed in chapter 2,
the weight of the 3-sphere is of the order of the entire sum of weights,
that we indicate as W(N). If we indicate with Wglobal(N) the sum
of the weights of the global geometries at time (or energy) N (3), we
have that this scales approximately as:

Wglobal(N) ≈ W(N)

N3
≈ eN

2

N3
, (8.2.1)

2The fact that 2.1.16 sums by definition over all possible geometries ensures us
that such geometries do exist “by construction”.

3The total weight is also the total number of ways the N units of energy can be
distributed along space.
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where we have approximatedW(N) ≈ eN
2

. Integrating over time, this
gives a scaling: ∫

N

Wglobal(n) ≈
W(N)

N2
≈ W(N)

lnW(N)
. (8.2.2)

This expresses the relation between the total weight, up to the size
W(N), of the global geometries, and the total weight of all the geo-
metries. With the substitutions π(n) ↔

∫
NWglobal and n ↔ W(N),

this is the same as the relation between the number of primes and the
natural numbers, expression 8.1.1. As previously discussed, as long as
the regularization cut-off V is finite this is just a correspondence bet-
ween the scaling behaviour of weights and sets of numbers. It becomes
however an exact correspondence with the sets of natural and prime
numbers in the limit in which the cut-off is removed by factorizing out
V , i.e. the limit V → ∞, when the weights become exactly integer
numbers.

Decoupling gravity from the theory, and in particular separating
the effects of gravity on the weak couplings, corresponds to looking
only at the geometries that describe the long-range part of the interac-
tion, related to the non-local geometries. Massive objects correspond
instead to localizable objects, and clearly belong to the local part of
the set of geometries 4. The strength of the coupling is related to the
weight of this subset of geometries. Looking at its running through
the mass scales means considering the weight of this subset of geome-
tries relative to the weight of the geometries building up the gravity
part:

α ↔
∫
MWglobal(m)

W(M)
≈ 1

lnW(M)
=⇒ α−1 ∼ lnμ . (8.2.3)

The actual energy scale μ is not the total energy of the universe, N :
microscopic energy scales are a fraction of the total energy of the uni-
verse, produced by the fact that in the microscopic physics one looks

4Notice that the usual field-theoretical description of free states in terms of plane
waves, which are by definition infinitely extended, indeed assumes this point of
view.
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8 Prime numbers and the structures of the universe

just at a subregion of each geometric configuration. Rather than being
the actual value of a coupling, expression 8.2.3 has to be understood
as giving the scaling behaviour with respect to the energy scales. The
logarithmic running of couplings catches the scaling of the long-range
part of the interactions. It gives quite correctly the behaviour of the
electroweak coupling through the energy scales at fixed age of the uni-
verse 5. We get here therefore another way of understanding why in
the perturbative theory masses are free parameters: to be rigorous,
the perturbative theory doesn’t know about masses, consistently with
the fact that they cannot be directly introduced in perturbative field
theory. The perturbative, logarithmic running belongs to a long-range,
flat-space description of the world.

Let us now consider a strong force, like the colour interaction in
the strong coupling regime (which is the dominant regime at sub-
Planckian energies, see chapter 3). In this case, the interaction is
not global, i.e. of infinite-range, but involves only localized objects.
The strength of the coupling is therefore related to the part of numbers
which are not prime, with density ∼ 1− 1

lnn . As a consequence, it does
not have the logarithmic scaling of a perturbative, gravity-decoupled
picture. It just evolves according to a power-low time-dependence on
the age of the universe, ∼ nβ for some exponent β), like the different
mass scales do (see chapter 4). A correct treatment of the strong
force and the weak interaction can only occur within a theoretical
framework in which also gravity is considered, i.e. a theory in which
also localized massive objects are consistently described.

5The weak interaction is here a medium range interaction which consists of a
“long range part”, the pure coupling, which behaves, and scales, similarly to
the electromagnetic coupling, and a suppressing mass term, which works as a
kind of cut-off, so that the effective coupling is αW/M

2
W . The scaling of αW is

logarithmic.
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Appendix

Conversion units for the age of the universe

We give here some conversion factors from time units to Planck mass
units. When expressed in seconds, one year is:

1 year (yr) = 3.1536 × 107 s .

In order to convert this value to eV units we divide by � = 6.582122 ×
10−22 MeV s. We obtain:

1 yr = 4.791160054 × 1028 MeV−1 .

Considering that the Planck mass MP = 1.2 × 1019GeV, we have also
the relation:

1 yr = 3.992633379 × 1050M−1P .

The age of the universe T , estimated to be around 11.5 to 14 billion
years, reads therefore:

T ≈
{

4.59152839
5.58968673

× 1060 M−1P .

If instead we take the neutron mass as the most precise way of deriving
the age of the universe, from expression 4.3.26 and the present-day
measured neutron mass, we obtain:

T ≈ 5.038816199 × 1060 M−1P ( = 12.6202827× 109 yr) . (A.1)
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